ﻻ يوجد ملخص باللغة العربية
The entanglement content of superpositions of quantum states is investigated based on a measure called {it concurrence}. Given a bipartite pure state in arbitrary dimension written as the quantum superposition of two other such states, we find simple inequalities relating the concurrence of the state to that of its components. We derive an exact expression for the concurrence when the component states are biorthogonal, and provide elegant upper and lower bounds in all other cases. For quantum bits, our upper bound is tighter than the previously derived bound in [Phys. Rev. Lett. 97, 100502 (2006).]
We derive the lower and upper bounds on the entanglement of a given multipartite superposition state in terms of the entanglement of the states being superposed. The first entanglement measure we use is the geometric measure, and the second is the q-
The estimation of multiple parameters in quantum metrology is important for a vast array of applications in quantum information processing. However, the unattainability of fundamental precision bounds for incompatible observables has greatly diminish
We experimentally measure the lower and upper bounds of concurrence for a set of two-qubit mixed quantum states using photonic systems. The measured concurrence bounds are in agreement with the results evaluated from the density matrices reconstructe
The bounds of concurrence in [F. Mintert and A. Buchleitner, Phys. Rev. Lett. 98 (2007) 140505] and [C. Zhang textit{et. al.}, Phys. Rev. A 78 (2008) 042308] are proved by using two properties of the fidelity. In two-qubit systems, for a given value
Establishing long-distance quantum entanglement, i.e., entanglement transmission, in quantum networks (QN) is a key and timely challenge for developing efficient quantum communication. Traditional comprehension based on classical percolation assumes