ترغب بنشر مسار تعليمي؟ اضغط هنا

Quasi-flat band enables subradiant two-photon bound states

188   0   0.0 ( 0 )
 نشر من قبل Alexander N. Poddubny
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study theoretically the radiative lifetime of bound two-particle excitations in a waveguide with an array of two-level atoms, realising a 1D Dicke-like model. Recently, Zhang et al. [arXiv:1908.01818] have numerically found an unexpected sharp maximum of the bound pair lifetime when the array period $d$ is equal to $1/12$th of the light wavelength $lambda_0$]. We uncover a rigorous transformation from the non-Hermitian Hamiltonian with the long-ranged radiative coupling to the nearest-neigbor coupling model with the radiative losses only at the edges. This naturally explains the puzzle of long lifetime: the effective mass of the bound photon pair also diverges for $d=lambda_0/12$, hampering an escape of photons through the edges. We also link the oscillations of the lifetime with the number of atoms to the nonmonotous quasi-flat-band dispersion of the bound pair.



قيم البحث

اقرأ أيضاً

48 - H. H. Jen , M.-S. Chang , 2016
We propose a set of subradiant states which can be prepared and detected in a one-dimensional optical lattice. We find that the decay rates are highly dependent on the spatial phases imprinted on the atomic chain, which gives systematic investigation s of the subradiance in the fluorescence experiments. The time evolution of these states can have long decay time where up to hundred milliseconds of lifetime is predicted for one hundred atoms. They can also show decayed Rabi-like oscillations with a beating frequency determined by the difference of cooperative Lamb shift in the subspace. Experimental requirements are also discussed for practical implementation of the subradiant states. Our proposal provides a novel scheme for quantum storage of photons in arrays of two-level atoms through the preparation and detection of subradiant states, which offer opportunities for quantum many-body state preparation and quantum information processing in optical lattices.
195 - Yanyan He , Ruosong Mao , Han Cai 2020
Flat bands play an important role in diffraction-free photonics and attract fundamental interest in many-body physics. Here we report the engineering of flat-band localization of collective excited states of atoms in Creutz superradiance lattices wit h tunable synthetic gauge fields. Magnitudes and phases of the lattice hopping coefficients can be independently tuned to control the state components of the flat band and the Aharonov-Bohm phases. We can selectively excite the flat band and control the flat-band localization with the synthetic gauge field. Our study provides a room-temperature platform for flat bands of atoms and holds promising applications in exploring correlated topological materials.
Transitions between quantum states by photon absorption or emission are intimately related to symmetries of the system which lead to selection rules and the formation of dark states. In a circuit quantum electrodynamics setup, in which two resonant s uperconducting qubits are coupled through an on-chip cavity and driven via the common cavity field, one single-excitation state remains dark. Here, we demonstrate that this dark state can be excited using local phase control of individual qubit drives to change the symmetry of the driving field. We observe that the dark state decay via spontaneous emission into the cavity is suppressed, a characteristic signature of subradiance. This local control technique could be used to prepare and study highly correlated quantum states of cavity-coupled qubits.
We predict the existence of a novel interaction-induced spatial localization in a periodic array of qubits coupled to a waveguide. This localization can be described as a quantum analogue of a self-induced optical lattice between two indistinguishabl e photons, where one photon creates a standing wave that traps the other photon. The localization is caused by the interplay between on-site repulsion due to the photon blockade and the waveguide-mediated long-range coupling between the qubits.
Anyons, particles displaying a fractional exchange statistics intermediate between bosons and fermions, play a central role in the fractional quantum Hall effect and various spin lattice models, and have been proposed for topological quantum computin g schemes due to their resilience to noise. Here we use parametric down-conversion in an integrated semiconductor chip to generate biphoton states simulating anyonic particle statistics, in a reconfigurable manner. Our scheme exploits the frequency entanglement of the photon pairs, which is directly controlled through the spatial shaping of the pump beam. These results, demonstrated at room temperature and telecom wavelength on a chip-integrated platform, pave the way to the practical implementation of quantum simulation tasks with tailored particle statistics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا