ﻻ يوجد ملخص باللغة العربية
We study theoretically the radiative lifetime of bound two-particle excitations in a waveguide with an array of two-level atoms, realising a 1D Dicke-like model. Recently, Zhang et al. [arXiv:1908.01818] have numerically found an unexpected sharp maximum of the bound pair lifetime when the array period $d$ is equal to $1/12$th of the light wavelength $lambda_0$]. We uncover a rigorous transformation from the non-Hermitian Hamiltonian with the long-ranged radiative coupling to the nearest-neigbor coupling model with the radiative losses only at the edges. This naturally explains the puzzle of long lifetime: the effective mass of the bound photon pair also diverges for $d=lambda_0/12$, hampering an escape of photons through the edges. We also link the oscillations of the lifetime with the number of atoms to the nonmonotous quasi-flat-band dispersion of the bound pair.
We propose a set of subradiant states which can be prepared and detected in a one-dimensional optical lattice. We find that the decay rates are highly dependent on the spatial phases imprinted on the atomic chain, which gives systematic investigation
Flat bands play an important role in diffraction-free photonics and attract fundamental interest in many-body physics. Here we report the engineering of flat-band localization of collective excited states of atoms in Creutz superradiance lattices wit
Transitions between quantum states by photon absorption or emission are intimately related to symmetries of the system which lead to selection rules and the formation of dark states. In a circuit quantum electrodynamics setup, in which two resonant s
We predict the existence of a novel interaction-induced spatial localization in a periodic array of qubits coupled to a waveguide. This localization can be described as a quantum analogue of a self-induced optical lattice between two indistinguishabl
Anyons, particles displaying a fractional exchange statistics intermediate between bosons and fermions, play a central role in the fractional quantum Hall effect and various spin lattice models, and have been proposed for topological quantum computin