ترغب بنشر مسار تعليمي؟ اضغط هنا

Preparation of Subradiant States using Local Qubit Control in Circuit QED

150   0   0.0 ( 0 )
 نشر من قبل Stefan Filipp
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transitions between quantum states by photon absorption or emission are intimately related to symmetries of the system which lead to selection rules and the formation of dark states. In a circuit quantum electrodynamics setup, in which two resonant superconducting qubits are coupled through an on-chip cavity and driven via the common cavity field, one single-excitation state remains dark. Here, we demonstrate that this dark state can be excited using local phase control of individual qubit drives to change the symmetry of the driving field. We observe that the dark state decay via spontaneous emission into the cavity is suppressed, a characteristic signature of subradiance. This local control technique could be used to prepare and study highly correlated quantum states of cavity-coupled qubits.

قيم البحث

اقرأ أيضاً

We study bifurcation measurement of a multi-level superconducting qubit using a nonlinear resonator biased in the straddling regime, where the resonator frequency sits between two qubit transition frequencies. We find that high-fidelity bifurcation m easurements are possible because of the enhanced qubit-state-dependent pull of the resonator frequency, the behavior of qubit-induced nonlinearities and the reduced Purcell decay rate of the qubit that can be realized in this regime. Numerical simulations find up to a threefold improvement in qubit readout fidelity when operating in, rather than outside of, the straddling regime. High-fidelity measurements can be obtained at much smaller qubit-resonator couplings than current typical experimental realizations, reducing spectral crowding and potentially simplifying the implementation of multi-qubit devices.
Superconducting electrical circuits can be used to study the physics of cavity quantum electrodynamics (QED) in new regimes, therefore realizing circuit QED. For quantum information processing and quantum optics, an interesting regime of circuit QED is the dispersive regime, where the detuning between the qubit transition frequency and the resonator frequency is much larger than the interaction strength. In this paper, we investigate how non-linear corrections to the dispersive regime affect the measurement process. We find that in the presence of pure qubit dephasing, photon population of the resonator used for the measurement of the qubit act as an effective heat bath, inducing incoherent relaxation and excitation of the qubit. Measurement thus induces both dephasing and mixing of the qubit, something that can reduce the quantum non-demolition aspect of the readout. Using quantum trajectory theory, we show that this heat bath can induce quantum jumps in the qubit state and reduce the achievable signal-to-noise ratio of a homodyne measurement of the voltage.
Using circuit QED, we consider the measurement of a superconducting transmon qubit via a coupled microwave resonator. For ideally dispersive coupling, ringing up the resonator produces coherent states with frequencies matched to transmon energy state s. Realistic coupling is not ideally dispersive, however, so transmon-resonator energy levels hybridize into joint eigenstate ladders of the Jaynes-Cummings type. Previous work has shown that ringing up the resonator approximately respects this ladder structure to produce a coherent state in the eigenbasis (a dressed coherent state). We numerically investigate the validity of this coherent state approximation to find two primary deviations. First, resonator ring-up leaks small stray populations into eigenstate ladders corresponding to different transmon states. Second, within an eigenstate ladder the transmon nonlinearity shears the coherent state as it evolves. We then show that the next natural approximation for this sheared state in the eigenbasis is a dressed squeezed state, and derive simple evolution equations for such states using a hybrid phase-Fock-space description.
285 - Zhen Wang , Hekang Li , Wei Feng 2019
Superradiance and subradiance concerning enhanced and inhibited collective radiation of an ensemble of atoms have been a central topic in quantum optics. However, precise generation and control of these states remain challenging. Here we deterministi cally generate up to 10-qubit superradiant and 8-qubit subradiant states, each containing a single excitation, in a superconducting quantum circuit with multiple qubits interconnected by a cavity resonator. The $sqrt{N}$-scaling enhancement of the coupling strength between the superradiant states and the cavity is validated. By applying appropriate phase gate on each qubit, we are able to switch the single collective excitation between superradiant and subradiant states. While the subradiant states containing a single excitation are forbidden from emitting photons, we demonstrate that they can still absorb photons from the resonator. However, for even number of qubits, a singlet state with half of the qubits being excited can neither emit nor absorb photons, which is verified with 4 qubits. This study is a step forward in coherent control of collective radiation and has promising applications in quantum information processing.
We introduce a new multimode cavity QED architecture for superconducting circuits which can be used to implement photonic memories, more efficient Purcell filters, and quantum simulations of photonic materials. We show that qubit interactions mediate d by multimode cavities can have exponentially improved contrast for two qubit gates without sacrificing gate speed. Using two-qubits coupled via a three-mode cavity system we spectroscopically observe multimode strong couplings up to 102MHz and demonstrate suppressed interactions off-resonance of 10kHz when the qubits are ~600MHz detuned from the cavity resonance. We study Landau-Zener transitions in our multimode systems and demonstrate quasi-adiabatic loading of single photons into the multimode cavity in 25ns. We introduce an adiabatic gate protocol to realize a controlled-Z gate between the qubits in 95ns and create a Bell state with 94.7% fidelity. This corresponds to an on/off ratio (gate contrast) of 1000.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا