ﻻ يوجد ملخص باللغة العربية
Flat bands play an important role in diffraction-free photonics and attract fundamental interest in many-body physics. Here we report the engineering of flat-band localization of collective excited states of atoms in Creutz superradiance lattices with tunable synthetic gauge fields. Magnitudes and phases of the lattice hopping coefficients can be independently tuned to control the state components of the flat band and the Aharonov-Bohm phases. We can selectively excite the flat band and control the flat-band localization with the synthetic gauge field. Our study provides a room-temperature platform for flat bands of atoms and holds promising applications in exploring correlated topological materials.
We study theoretically the radiative lifetime of bound two-particle excitations in a waveguide with an array of two-level atoms, realising a 1D Dicke-like model. Recently, Zhang et al. [arXiv:1908.01818] have numerically found an unexpected sharp max
We study the pairing and superconducting properties of the attractive Hubbard model in two quasi one-dimensional topological lattices: the Creutz and sawtooth lattices. They share two peculiar properties: each of their band structures exhibits a flat
We use unbiased numerical methods to study the onset of pair superfluidity in a system that displays flat bands in the noninteracting regime. This is achieved by using a known example of flat band systems, namely the Creutz lattice, where we investig
We report on the engineering of a non-dispersive (flat) energy band in a geometrically frustrated lattice of micro-pillar optical cavities. By taking advantage of the non-hermitian nature of our system, we achieve bosonic condensation of exciton-pola
Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian. The ideal experimental emulation of such a model utilizes simultaneous, high-fidelity control and readout of each latt