ﻻ يوجد ملخص باللغة العربية
We present recent progress towards the implementation of a scalable quantum processor based on fully-depleted silicon-on-insulator (FDSOI) technology. In particular, we discuss an approach where the elementary bits of quantum information - so-called qubits - are encoded in the spin degree of freedom of gate-confined holes in p-type devices. We show how a hole-spin can be efficiently manipulated by means of a microwave excitation applied to the corresponding confining gate. The hole spin state can be read out and reinitialized through a Pauli blockade mechanism. The studied devices are derived from silicon nanowire field-effect transistors. We discuss their prospects for scalability and, more broadly, the potential advantages of FDSOI technology.
We report the first quantum bit device implemented on a foundry-compatible Si CMOS platform. The device, fabricated using SOI NanoWire MOSFET technology, is in essence a compact two-gate pFET. The qubit is encoded in the spin degree of freedom of a h
We theoretically study single and two-qubit dynamics in the circuit QED architecture. We focus on the current experimental design [Wallraff et al., Nature 431, 162 (2004); Schuster et al., Nature 445, 515 (2007)] in which superconducting charge qubit
We successfully demonstrated experimentally the electrical-field-mediated control of the spin of electrons confined in an SOI Quantum Dot (QD) device fabricated with a standard CMOS process flow. Furthermore, we show that the Back-Gate control in SOI
This paper reports the first cryogenic characterization of 28nm Fully-Depleted-SOI CMOS technology. A comprehensive study of digital/analog performances and body-biasing from room to the liquid helium temperature is presented. Despite a cryogenic ope
Amplifiers are crucial in every experiment carrying out a very sensitive measurement. However, they always degrade the information by adding noise. Quantum mechanics puts a limit on how small this degradation can be. Theoretically, the minimum noise