ﻻ يوجد ملخص باللغة العربية
The combined effects of the Lorentz-symmetry violating Chern-Simons and Ricci-Cotton actions are investigated for the Einstein-Hilbert gravity in the second order formalism modified by higher derivative terms, and their consequences on the spectrum of excitations are analyzed. We follow the lines of previous works and build up an orthonormal basis of operators that splits the fundamental fields according to their individual degrees of freedom. With this new basis, the attainment of the propagators is remarkably simplified and the identification of the physical and unphysical modes gets a new insight. Our conclusion is that the only tachyon- and ghost-free model is the Einstein-Hilbert action added up by the Chern-Simons term with a time-like vector of the type $v^{mu} = (mu,vec{0})$. Spectral consistency imposes taht the Ricci-Cotton term must be switched off. We then infer that gravity with Lorentz-symmetry violation imposes a drastically different constraint on the background if compared to usual gauge theories whenever conditions for suppression of tachyons and ghosts are required.
This paper is withdrawn because its results have been previously reported in arxiv hep-th/0507200.
We construct a manifestly covariant differential Noether charge for theories with Chern-Simons terms in higher dimensional spacetimes. This is in contrast to Tachikawas extension of the standard Lee-Iyer-Wald formalism which results in a non-covarian
We show that conformal Chern-Simons gravity in three dimensions has various holographic descriptions. They depend on the boundary conditions on the conformal equivalence class and the Weyl factor, even when the former is restricted to asymptotic Anti
We demonstrate generation of the two-dimensional Chern-Simons-like Lorentz-breaking action via an appropriate Lorentz-breaking coupling of scalar and spinor fields at zero as well as at the finite temperature and via the noncommutative fields method
Motivated by the vast string landscape, we consider the shear viscosity to entropy density ratio in conformal field theories dual to Einstein gravity with curvature square corrections. After field redefinitions these theories reduce to Gauss-Bonnet g