ﻻ يوجد ملخص باللغة العربية
We describe a method for creating small quantum processors in a crystal stoichiometric in an optically active rare earth ion. The crystal is doped with another rare earth, creating an ensemble of identical clusters of surrounding ions, whose optical and hyperfine frequencies are uniquely determined by their spatial position in the cluster. Ensembles of ions in each unique position around the dopant serve as qubits, with strong local interactions between ions in different qubits. These ensemble qubits can each be used as a quantum memory for light, and we show how the interactions between qubits can be used to perform linear operations on the stored photonic state. We also describe how these ensemble qubits can be used to enact, and study, error correction.
We have obtained a low optical inhomogeneous linewidth of 25 MHz in the stoichiometric rare earth crystal EuCl3 .6H2 O by isotopically purifying the crystal in 35 Cl. With this linewidth, an important limit for stoichiometric rare earth crystals is s
We present a quantum repeater scheme that is based on individual erbium and europium ions. Erbium ions are attractive because they emit photons at telecommunication wavelength, while europium ions offer exceptional spin coherence for long-term storag
We demonstrate optical probing of spectrally resolved single Nd rare-earth ions in yttrium orthovanadate. The ions are coupled to a photonic crystal resonator and show strong enhancement of the optical emission rate via the Purcell effect, resulting
We explore spin-orbit thermal entanglement in rare-earth ions, based on a witness obtained from mean energies. The entanglement temperature $T_{E}$, below which entanglement emerges, is found to be thousands of kelvin above room temperature for all l
We demonstrate that experiments measuring the transition energies of rare-earth ions doped in crystalline lattices are sensitive to violations of Local Lorentz Invariance and Einsteins Equivalence Principle. Using the crystal field of LaCl$_{3}$ as a