ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum repeaters with individual rare-earth ions at telecommunication wavelengths

307   0   0.0 ( 0 )
 نشر من قبل Nikolai Lauk
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a quantum repeater scheme that is based on individual erbium and europium ions. Erbium ions are attractive because they emit photons at telecommunication wavelength, while europium ions offer exceptional spin coherence for long-term storage. Entanglement between distant erbium ions is created by photon detection. The photon emission rate of each erbium ion is enhanced by a microcavity with high Purcell factor, as has recently been demonstrated. Entanglement is then transferred to nearby europium ions for storage. Gate operations between nearby ions are performed using dynamically controlled electric-dipole coupling. These gate operations allow entanglement swapping to be employed in order to extend the distance over which entanglement is distributed. The deterministic character of the gate operations allows improved entanglement distribution rates in comparison to atomic ensemble-based protocols. We also propose an approach that utilizes multiplexing in order to enhance the entanglement distribution rate.

قيم البحث

اقرأ أيضاً

We have obtained a low optical inhomogeneous linewidth of 25 MHz in the stoichiometric rare earth crystal EuCl3 .6H2 O by isotopically purifying the crystal in 35 Cl. With this linewidth, an important limit for stoichiometric rare earth crystals is s urpassed: the hyperfine structure of 153Eu is spectrally resolved, allowing the whole population of 153Eu3+ ions to be prepared in the same hyperfine state using hole burning techniques. This material also has a very high optical density and can have long coherence times when deuterated. This combination of properties offers new prospects for quantum information applications. We consider two of these, quantum memories and quantum many body studies. We detail the improvements in the performance of current memory protocols possible in these high optical depth crystals, and how certain memory protocols, such as off-resonant Raman memories, can be implemented for the first time in a solid state system. We explain how the strong excitation-induced interactions observed in this material resemble those seen in Rydberg systems, and describe how these interactions can lead to quantum many-body states that could be observed using standard optical spectroscopy techniques.
We describe a method for creating small quantum processors in a crystal stoichiometric in an optically active rare earth ion. The crystal is doped with another rare earth, creating an ensemble of identical clusters of surrounding ions, whose optical and hyperfine frequencies are uniquely determined by their spatial position in the cluster. Ensembles of ions in each unique position around the dopant serve as qubits, with strong local interactions between ions in different qubits. These ensemble qubits can each be used as a quantum memory for light, and we show how the interactions between qubits can be used to perform linear operations on the stored photonic state. We also describe how these ensemble qubits can be used to enact, and study, error correction.
Electro-optical control of on-chip photonic devices is an essential tool for efficient integrated photonics. Lithium niobate on insulator (LNOI) is an emerging platform for on-chip photonics due to its large electro-optic coefficient and high nonline arity [1]. Integrating quantum emitters into LNOI would extend their versatile use in classic photonics to quantum computing and communication [2, 3]. Here, we incorporate single rare-earth ions (REI) quantum emitters in electro-optical tunable lithium niobite (LN) thin films and demonstrate control of LN microcavities coupled to REI over a frequency range of 160 GHz with 5 mus switching speed. Dynamical control of the cavities enables the modulation of the Purcell enhancement of the REIs with short time constants. Using the Purcell enhancement, we show evidence of detecting single Yb3+ ions in LN cavities. Coupling quantum emitters in fast tunable photonic devices is an efficient method to shape the waveform of the emitter [4]. It also offers a platform to encode quantum information in the integration of a spectral-temporal-spatial domain to achieve high levels of channel multiplexing, as well as an approach to generate deterministic single-photon sources [5, 6].
We examine the viability of quantum repeaters based on two-species trapped ion modules for long distance quantum key distribution. Repeater nodes comprised of ion-trap modules of co-trapped ions of distinct species are considered. The species used fo r communication qubits has excellent optical properties while the other longer lived species serves as a memory qubit in the modules. Each module interacts with the network only via single photons emitted by the communication ions. Coherent Coulomb interaction between ions is utilized to transfer quantum information between the communication and memory ions and to achieve entanglement swapping between two memory ions. We describe simple modular quantum repeater architectures realizable with the ion-trap modules and numerically study the dependence of the quantum key distribution rate on various experimental parameters, including coupling efficiency, gate infidelity, operation time and length of the elementary links. Our analysis suggests crucial improvements necessary in a physical implementation for co-trapped two-species ions to be a competitive platform in long-distance quantum communication.
Quantum repeaters provide an efficient solution to distribute Bell pairs over arbitrarily long distances. While scalable architectures are demanding regarding the number of qubits that need to be controlled, here we present a quantum repeater scheme aiming to extend the range of present day quantum communications that could be implemented in the near future with trapped ions in cavities. We focus on an architecture where ion-photon entangled states are created locally and subsequently processed with linear optics to create elementary links of ion-ion entangled states. These links are then used to distribute entangled pairs over long distances using successive entanglement swapping operations performed deterministically using ion-ion gates. We show how this architecture can be implemented while encoding the qubits in a decoherence free subspace to protect them against collective dephasing. This results in a protocol that can be used to violate a Bell inequality over distances of about 800 km assuming state of the art parameters. We discuss how this could be improved to several thousand kilometers in future setups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا