ﻻ يوجد ملخص باللغة العربية
In this paper, we consider a massive multiple-input-multiple-output (MIMO) downlink system that improves the hardware efficiency by dynamically selecting the antenna subarray and utilizing 1-bit phase shifters for hybrid beamforming. To maximize the spectral efficiency, we propose a novel deep unsupervised learning-based approach that avoids the computationally prohibitive process of acquiring training labels. The proposed design has its input as the channel matrix and consists of two convolutional neural networks (CNNs). To enable unsupervised training, the problem constraints are embedded in the neural networks: the first CNN adopts deep probabilistic sampling, while the second CNN features a quantization layer designed for 1-bit phase shifters. The two networks can be trained jointly without labels by sharing an unsupervised loss function. We next propose a phased training approach to promote the convergence of the proposed networks. Simulation results demonstrate the advantage of the proposed approach over conventional optimization-based algorithms in terms of both achieved rate and computational complexity.
Increasing the number of transmit and receive elements in multiple-input-multiple-output (MIMO) antenna arrays imposes a substantial increase in hardware and computational costs. We mitigate this problem by employing a reconfigurable MIMO array where
In this paper, we consider the problem of joint antenna selection and analog beamformer design in downlink single-group multicast networks. Our objective is to reduce the hardware costs by minimizing the number of required phase shifters at the trans
Cooperative beamforming across access points (APs) and fronthaul quantization strategies are essential for cloud radio access network (C-RAN) systems. The nonconvexity of the C-RAN optimization problems, which is stemmed from per-AP power and frontha
In this paper, outage probability (OP) of a joint transmit and receive antenna selection (JTRAS) scheme is analyzed in multiple-input multiple-output non orthogonal multiple access based downlink energy harvesting (EH) relaying networks. In this dual
Integrating unmanned aerial vehicle (UAV) into the existing cellular networks that are delicately designed for terrestrial transmissions faces lots of challenges, in which one of the most striking concerns is how to adopt UAV into the cellular networ