ترغب بنشر مسار تعليمي؟ اضغط هنا

High resolution spectroscopy of individual erbium ions in strong magnetic fields

104   0   0.0 ( 0 )
 نشر من قبل Gabriele De Boo
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we use electrically detected optical excitation spectroscopy of individual erbium ions in silicon to determine their optical and paramagnetic properties simultaneously. We demonstrate that this high spectral resolution technique can be exploited to observe interactions typically unresolvable in silicon using conventional spectroscopy techniques due to inhomogeneous broadening. In particular, we resolve the Zeeman splitting of the 4I15/2 ground and 4I13/2 excited state separately and in strong magnetic fields we observe the anti-crossings between Zeeman components of different crystal field levels. We discuss the use of this electronic detection technique in identifying the symmetry and structure of erbium sites in silicon.

قيم البحث

اقرأ أيضاً

Multidimensional coherent optical spectroscopy is one of the most powerful tools for investigating complex quantum mechanical systems. While it was conceived decades ago in magnetic resonance spectroscopy using micro- and radio-waves, it has recently been extended into the visible and UV spectral range. However, resolving MHz energy splittings with ultrashort laser pulses has still remained a challenge. Here, we analyze two-dimensional Fourier spectra for resonant optical excitation of resident electrons to localized trions or donor-bound excitons in semiconductor nanostructures subject to a transverse magnetic field. Particular attention is devoted to Raman coherence spectra which allow one to accurately evaluate tiny splittings of the electron ground state and to determine the relaxation times in the electron spin ensemble. A stimulated step-like Raman process induced by a sequence of two laser pulses creates a coherent superposition of the ground state doublet which can be retrieved only optically due to selective excitation of the same sub-ensemble with a third pulse. This provides the unique opportunity to distinguish between different complexes that are closely spaced in energy in an ensemble. The related experimental demonstration is based on photon echo measurements in an n-type CdTe/(Cd,Mg)Te quantum well structure detected by a heterodyne technique. The difference in the sub-$mu$eV range between the Zeeman splittings of donor-bound electrons and electrons localized at potential fluctuations can be resolved even though the homogeneous linewidth of the optical transitions is larger by two orders of magnitude.
High resolution coherent nonlinear optical spectroscopy of an ensemble of red-emitting InGaN quantum dots in GaN nanowires is reported. The data show a pronounced atom-like interaction between resonant laser fields and quantum dot excitons at low tem perature that is difficult to observe in the linear absorption spectrum due to inhomogeneous broadening from indium fluctuation effects. We find that the nonlinear signal persists strongly at room temperature. The robust atom-like room temperature response indicates the possibility that this material could serve as the platform for proposed excitonic based applications without the need of cryogenics.
Magnetotransport properties of p-InMnAs layers are studied in pulsed magnetic fields up to 30 T. Samples were prepared by the laser deposition and annealed by ruby laser pulses. Well annealed samples show p-type conductivity while they were n-type be fore the annealing. Surprisingly the anomalous Hall effect resistance in paramagnetic state (T>40 K) and in strong magnetic fields (B > 20 T) appears to be greater than that in ferromagnetic state (T <= 40 K), while the longitudinal resistance rises with the temperature decrease. The negative magnetoresistance saturates in magnetic fields higher then 10T at T near 4 K only, whereas the saturation fields of the anomalous Hall effect resistance are much less (around 2 T at 30K). The total reduction of resistance exceeds 10 times in magnetic fields around of 10T. The obtained results are interpreted on the base of the assumptions of the non-uniform distribution of Mn atoms acting as acceptors, the local ferromagnetic transition and the percolation-like character of the film conductivity, which prevailed under conditions of the strong fluctuations of the exchange interaction. Characteristic scales of the magneto-electric nonuniformity are estimated using analysis of the mesoscopic fluctuations of the non-diagonal components of the magnetoresistivity tensor.
We have performed a systematic high-momentum-resolution photoemission study on ZrTe$_5$ using $6$ eV photon energy. We have measured the band structure near the $Gamma$ point, and quantified the gap between the conduction and valence band as $18 leq Delta leq 29$ meV. We have also observed photon-energy-dependent behavior attributed to final-state effects and the 3D nature of the materials band structure. Our interpretation indicates the gap is intrinsic and reconciles discrepancies on the existence of a topological surface state reported by different studies. The existence of a gap suggests that ZrTe$_5$ is not a 3D strong topological insulator nor a 3D Dirac semimetal. Therefore, our experiment is consistent with ZrTe$_5$ being a 3D weak topological insulator.
Using an equation of motion (EOM) approach, we calculate excitonic properties of monolayer transition metal dichalcogenides (TMDs) perturbed by an external magnetic field. We compare our findings to the widely used Wannier model for excitons in two-d imensional materials and to recent experimental results. We find good agreement between the calculated excitonic transition energies and the experimental results. In addition, we find that the exciton energies calculated using the EOM approach are slightly lower than the ones calculated using the Wannier model. Finally, we also show that the effect of the dielectric environment on the magnetoexciton transition energy is minimal due to counteracting changes in the exciton energy and the exchange self-energy correction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا