ﻻ يوجد ملخص باللغة العربية
Magnetotransport properties of p-InMnAs layers are studied in pulsed magnetic fields up to 30 T. Samples were prepared by the laser deposition and annealed by ruby laser pulses. Well annealed samples show p-type conductivity while they were n-type before the annealing. Surprisingly the anomalous Hall effect resistance in paramagnetic state (T>40 K) and in strong magnetic fields (B > 20 T) appears to be greater than that in ferromagnetic state (T <= 40 K), while the longitudinal resistance rises with the temperature decrease. The negative magnetoresistance saturates in magnetic fields higher then 10T at T near 4 K only, whereas the saturation fields of the anomalous Hall effect resistance are much less (around 2 T at 30K). The total reduction of resistance exceeds 10 times in magnetic fields around of 10T. The obtained results are interpreted on the base of the assumptions of the non-uniform distribution of Mn atoms acting as acceptors, the local ferromagnetic transition and the percolation-like character of the film conductivity, which prevailed under conditions of the strong fluctuations of the exchange interaction. Characteristic scales of the magneto-electric nonuniformity are estimated using analysis of the mesoscopic fluctuations of the non-diagonal components of the magnetoresistivity tensor.
Micron-thick boron films have been deposited by Pulsed Laser Deposition in vacuum on several substrates at room temperature. The use of high energy pulses (>700 mJ) results in the deposition of smooth coatings with low oxygen uptake even at base pres
A simple one-stage solution-based method was developed to produce graphene nanoribbons by sonicating graphite powder in organic solutions with polymer surfactant. The graphene nanoribbons were deposited on silicon substrate, and characterized by Rama
The effect of chemical doping on the ZSiNRs with Mn as passivating element replacing H atoms at one edge are investigated by first principles calculations.The structures optimized in the typical ferromagnetic and antiferromagnetic coupling show that
Cu2Ta4O12 (CTaO) thin films were successfully deposited on Si(100) substrates by pulsed-laser deposition technique. The crystalline structure and the surface morphology of the CTaO thin films were strongly affected by substrate temperature, oxygen pr
Wires of sp-hybridized carbon atoms are attracting interest for both fundamental aspects of carbon science and for their appealing functional properties. The synthesis by physical vapor deposition has been reported to provide sp-rich carbon films but