ﻻ يوجد ملخص باللغة العربية
In this work we analyze an optimized artificial fixed-stress iteration scheme for the numerical approximation of the Biot system modelling fluid flow in deformable porous media. The iteration is based on a prescribed constant artificial volumetric mean total stress in the first half step. The optimization comes through the adaptation of a numerical stabilization or tuning parameter and aims at an acceleration of the iterations. The separated subproblems of fluid flow, written as a mixed first order in space system, and mechanical deformation are discretized by space-time finite element methods of arbitrary order. Continuous and discontinuous discretizations of the time variable are encountered. The convergence of the iteration schemes is proved for the continuous and fully discrete case. The choice of the optimization parameter is identified in the proofs of convergence of the iterations. The analyses are illustrated and confirmed by numerical experiments.
We present an iterative coupling scheme for the numerical approximation of the mixed hyperbolic-parabolic system of fully dynamic poroelasticity. We prove its convergence in the Banach space setting for an abstract semi-discretization in time that al
We extend our analysis on the Oldroyd-B model in Barrett and Boyaval [1] to consider the finite element approximation of the FENE-P system of equations, which models a dilute polymeric fluid, in a bounded domain $D $subset$ R d , d = 2 or 3$, subject
In this paper, we aim at solving the Biot model under stabilized finite element discretizations. To solve the resulting generalized saddle point linear systems, some iterative methods are proposed and compared. In the first method, we apply the GMRES
In this paper, we apply the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) to first solving a nonlinear poroelasticity problem. The arising system consists of a nonlinear pressure equation and a nonlinear stres
In the past decade, there are many works on the finite element methods for the fully nonlinear Hamilton--Jacobi--Bellman (HJB) equations with Cordes condition. The linearised systems have large condition numbers, which depend not only on the mesh siz