ﻻ يوجد ملخص باللغة العربية
We report on a new mode of self-propulsion exhibited by compact drops of active liquids on a substrate which, remarkably, is tractionless, i.e., which imparts no mechanical stress locally on the surface. We show, both analytically and by numerical simulation, that the equations of motion for an active nematic drop possess a simple self-propelling solution, with no traction on the solid surface and in which the direction of motion is controlled by the winding of the nematic director field across the drop height. The physics underlying this mode of motion has the same origins as that giving rise to the zero viscosity observed in bacterial suspensions. This topologically protected tractionless self-propusion provides a robust physical mechanism for efficient cell migration in crowded environments like tissues.
We study the motion of oil drops propelled by actin polymerization in cell extracts. Drops deform and acquire a pear-like shape under the action of the elastic stresses exerted by the actin comet. We solve this free boundary problem and calculate the
We discuss the flow field and propulsion velocity of active droplets, which are driven by body forces residing on a rigid gel. The latter is modelled as a porous medium which gives rise to permeation forces. In the simplest model, the Brinkman equati
Numerous physical models have been proposed to explain how cell motility emerges from internal activity, mostly focused on how crawling motion arises from internal processes. Here we offer a classification of self-propulsion mechanisms based on gener
We recently argued that a self-propelled particle is formally equivalent to a system consisting of two subsystems coupled by a non-reciprocal interaction [Phys. Rev. E 100, 050603(R) (2019)]. Here we show that this non-reciprocal coupling allows to e
Oscillations of flagella and cilia play an important role in biology, which motivates the idea of functional mimicry as part of bio-inspired applications. Nevertheless, it still remains challenging to drive their artificial counterparts to oscillate