ترغب بنشر مسار تعليمي؟ اضغط هنا

Propulsion driven by self-oscillation via an electrohydrodynamic instability

88   0   0.0 ( 0 )
 نشر من قبل Lailai Zhu Mr.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Oscillations of flagella and cilia play an important role in biology, which motivates the idea of functional mimicry as part of bio-inspired applications. Nevertheless, it still remains challenging to drive their artificial counterparts to oscillate via a steady, homogeneous stimulus. Combining theory and simulations, we demonstrate a strategy to achieve this goal by using an elasto-electro-hydrodynamic instability. In particular, we show that applying a uniform DC electric field can produce self-oscillatory motion of a microrobot composed of a dielectric particle and an elastic filament. Upon tuning the electric field and filament elasticity, the microrobot exhibits three distinct behaviors: a stationary state, undulatory swimming and steady spinning, where the swimming behavior stems from an instability emerging through a Hopf bifurcation. Our results imply the feasibility of engineering self-oscillations by leveraging the elasto-viscous response to control the type of bifurcation and the form of instability. We anticipate that our strategy will be useful in a broad range of applications imitating self-oscillatory natural phenomena and biological processes.



قيم البحث

اقرأ أيضاً

Under a steady DC electric field of sufficient strength, a weakly conducting dielectric sphere in a dielectric solvent with higher conductivity can undergo spontaneous spinning (Quincke rotation) through a pitchfork bifurcation. We design an object c omposed of a dielectric sphere and an elastic filament. By solving an elasto-electro-hydrodynamic (EEH) problem numerically, we uncover an EEH instability exhibiting diverse dynamic responses. Varying the bending stiffness of the filament, the composite object displays three behaviours: a stationary state, undulatory swimming and steady spinning, where the swimming results from a self-oscillatory instability through a Hopf bifurcation. By conducting a linear stability analysis incorporating an elastohydrodynamic model, we theoretically predict the growth rates and critical conditions, which agree well with the numerical counterparts. We also propose a reduced model system consisting of a minimal elastic structure which reproduces the EEH instability. The elasto-viscous response of the composite structure is able to transform the pitchfork bifurcation into a Hopf bifurcation, leading to self-oscillation. Our results imply a new way of harnessing elastic media to engineer self-oscillations, and more generally, to manipulate and diversify the bifurcations and the corresponding instabilities. These ideas will be useful in designing soft, environmentally adaptive machines.
We discuss the flow field and propulsion velocity of active droplets, which are driven by body forces residing on a rigid gel. The latter is modelled as a porous medium which gives rise to permeation forces. In the simplest model, the Brinkman equati on, the porous medium is characterised by a single length scale $ell$ --the square root of the permeability. We compute the flow fields inside and outside of the droplet as well as the energy dissipation as a function of $ell$. We furthermore show that there are optimal gel fractions, giving rise to maximal linear and rotational velocities. In the limit $elltoinfty$, corresponding to a very dilute gel, we recover Stokes flow. The opposite limit, $ellto 0$, corresponding to a space filling gel, is singular and not equivalent to Darcys equation, which cannot account for self-propulsion.
We propose two-dimensional organic poly(heptazine imide) (PHI) carbon nitride microparticles as light-driven microswimmers in various ionic and biological media. Their demonstrated high-speed (15-23 $mu$m/s) swimming in multi-component ionic solution s with concentrations up to 1 M and without dedicated fuels is unprecedented, overcoming one of the bottlenecks of previous light-driven microswimmers. Such high ion tolerance is attributed to a favorable interplay between the particles textural and structural nanoporosity and optoionic properties, facilitating ionic interactions in solutions with high salinity. Biocompatibility of the microswimmers is validated by cell viability tests with three different cell types and primary cells. The nanopores of the swimmers are loaded with a model cancer drug, doxorubicin (DOX), in high (185%) loading efficiency without passive release. Controlled drug release is reported in different pH conditions and can be triggered on-demand also by illumination. Light-triggered, boosted release of DOX and its active degradation products is demonstrated in oxygen-poor conditions using the intrinsic, environmentally sensitive and light-induced charge storage properties of PHI, which could enable future theranostic applications in oxygen-deprived tumor regions. These organic PHI microswimmers simultaneously solve the current light-driven microswimmer challenges of high ion tolerance, fuel-free high-speed propulsion in biological media, biocompatibility and controlled on-demand cargo release towards their biomedical, environmental and other potential future applications.
The bacterium Helicobacter pylori causes ulcers in the stomach of humans by invading mucus layers protecting epithelial cells. It does so by chemically changing the rheological properties of the mucus from a high-viscosity gel to a low-viscosity solu tion in which it may self-propel. We develop a two-fluid model for this process of swimming under self-generated confinement. We solve exactly for the flow and the locomotion speed of a spherical swimmer located in a spherically symmetric system of two Newtonian fluids whose boundary moves with the swimmer. We also treat separately the special case of an immobile outer fluid. In all cases, we characterise the flow fields, their spatial decay, and the impact of both the viscosity ratio and the degree of confinement on the locomotion speed of the model swimmer. The spatial decay of the flow retains the same power-law decay as for locomotion in a single fluid but with a decreased magnitude. Independently of the assumption chosen to characterise the impact of confinement on the actuation applied by the swimmer, its locomotion speed always decreases with an increase in the degree of confinement. Our modelling results suggest that a low-viscosity region of at least six times the effective swimmer size is required to lead to swimming with speeds similar to locomotion in an infinite fluid, corresponding to a region of size above $approx 25~mu$m for Helicobacter pylori.
The active Brownian particle (ABP) model describes a swimmer, synthetic or living, whose direction of swimming is a Brownian motion. The swimming is due to a propulsion force, and the fluctuations are typically thermal in origin. We present a 2D mode l where the fluctuations arise from nonthermal noise in a propelling force acting at a single point, such as that due to a flagellum. We take the overdamped limit and find several modifications to the traditional ABP model. Since the fluctuating force causes a fluctuating torque, the diffusion tensor describing the process has a coupling between translational and rotational degrees of freedom. An anisotropic particle also exhibits a noise-induced induced drift. We show that these effects have measurable consequences for the long-time diffusivity of active particles, in particular adding a contribution that is independent of where the force acts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا