ﻻ يوجد ملخص باللغة العربية
Oscillations of flagella and cilia play an important role in biology, which motivates the idea of functional mimicry as part of bio-inspired applications. Nevertheless, it still remains challenging to drive their artificial counterparts to oscillate via a steady, homogeneous stimulus. Combining theory and simulations, we demonstrate a strategy to achieve this goal by using an elasto-electro-hydrodynamic instability. In particular, we show that applying a uniform DC electric field can produce self-oscillatory motion of a microrobot composed of a dielectric particle and an elastic filament. Upon tuning the electric field and filament elasticity, the microrobot exhibits three distinct behaviors: a stationary state, undulatory swimming and steady spinning, where the swimming behavior stems from an instability emerging through a Hopf bifurcation. Our results imply the feasibility of engineering self-oscillations by leveraging the elasto-viscous response to control the type of bifurcation and the form of instability. We anticipate that our strategy will be useful in a broad range of applications imitating self-oscillatory natural phenomena and biological processes.
Under a steady DC electric field of sufficient strength, a weakly conducting dielectric sphere in a dielectric solvent with higher conductivity can undergo spontaneous spinning (Quincke rotation) through a pitchfork bifurcation. We design an object c
We discuss the flow field and propulsion velocity of active droplets, which are driven by body forces residing on a rigid gel. The latter is modelled as a porous medium which gives rise to permeation forces. In the simplest model, the Brinkman equati
We propose two-dimensional organic poly(heptazine imide) (PHI) carbon nitride microparticles as light-driven microswimmers in various ionic and biological media. Their demonstrated high-speed (15-23 $mu$m/s) swimming in multi-component ionic solution
The bacterium Helicobacter pylori causes ulcers in the stomach of humans by invading mucus layers protecting epithelial cells. It does so by chemically changing the rheological properties of the mucus from a high-viscosity gel to a low-viscosity solu
The active Brownian particle (ABP) model describes a swimmer, synthetic or living, whose direction of swimming is a Brownian motion. The swimming is due to a propulsion force, and the fluctuations are typically thermal in origin. We present a 2D mode