ﻻ يوجد ملخص باللغة العربية
Micromagnetic simulations have been performed to investigate the suppression of the skyrmion Hall effect in nanotracks with their magnetic properties strategically modified. In particular, we study two categories of magnetically modified nanotracks. One of them, repulsive edges have been inserted in the nanotrack and, in the other, an attractive strip has been placed exactly on the longest axis of the nanotrack. Attractive and repulsive interactions can be generated from the engineering of magnetic properties. For instance, it is known that the skyrmion can be attracted to a region where the exchange stiffness constant is decreased. On the other hand, the skyrmion can be repelled from a region characterized by a local increase in the exchange stiffness constant. In order to provide a background for experimental studies, we vary not only the magnetic material parameters (exchange stiffness, perpendicular magnetocrystalline anisotropy and the Dzyaloshinskii-Moriya constant) but also the width of the region magnetically modified, containing either a local reduction or a local increase for each one of these magnetic properties. In the numerical simulations, the skyrmion motion was induced by a spin-polarized current and the found results indicate that it is possible to transport skyrmions around the longest axis of the nanotrack. In practice, the skyrmion Hall effect can be completely suppressed in magnetic nanotracks with strategically modified magnetic properties. Furthermore, we discuss in detail 6 ways to suppress the skyrmion Hall effect by the usage of nanotracks with repulsive edges and nanotracks with an attractive strip.
Magnetic skyrmions are of considerable interest for low-power memory and logic devices because of high speed at low current and high stability due to topological protection. We propose a skyrmion field-effect transistor based on a gate-controlled Dzy
Filamentary textures can take the form of braided, rope-like superstructures in nonlinear media such as plasmas and superfluids. The formation of similar superstructures in solids has been predicted, for example from flux lines in superconductors. Ho
Chromium iodide monolayers, which have different magnetic properties in comparison to the bulk chromium iodide, have been shown to form skyrmionic states in applied electromagnetic fields or in Janus-layer devices. In this work, we demonstrate that s
Nanoscale magnetic skyrmions are considered as potential information carriers for future spintronics memory and logic devices. Such applications will require the control of their local creation and annihilation, which involves so far solutions that a
The effects of Cu-doping on the structural, magnetic, and transport properties of La0.7Sr0.3Mn1-xCuxO3 (0 < x < 0.20) have been studied using neutron diffraction, magnetization and magnetoresistance (MR) measurements. All samples show the rhombohedra