ترغب بنشر مسار تعليمي؟ اضغط هنا

Defect-Induced Magnetic Skyrmion in Two-Dimensional Chromium Tri-Iodide Monolayer

363   0   0.0 ( 0 )
 نشر من قبل Xiaosong Li
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ryan A. Beck




اسأل ChatGPT حول البحث

Chromium iodide monolayers, which have different magnetic properties in comparison to the bulk chromium iodide, have been shown to form skyrmionic states in applied electromagnetic fields or in Janus-layer devices. In this work, we demonstrate that spin-canted solutions can be induced into monolayer chromium iodide by select substitution of iodide atoms with isovalent impurities. Several concentrations and spatial configurations of halide substitutional defects are selected to probe the coupling between the local defect-induced geometric distortions and orientation of chromium magnetic moments. This work provides atomic-level insight into how atomically precise strain-engineering can be used to create and control complex magnetic patterns in chromium iodide layers and lays out the foundation for investigating the field- and geometric-dependent magnetic properties in similar two-dimensional materials.



قيم البحث

اقرأ أيضاً

113 - Zewen Wu , Jin Yu , Shengjun Yuan 2019
Two-dimensional CrI3 has attracted much attention as it is reported to be a ferromagnetic semiconductor with the Curie temperature around 45K. By performing first-principles calculations, we find that the magnetic ground state of CrI3 is variable und er biaxial strain. Our theoretical investigations show that the ground state of monolayer CrI3 is ferromagnetic under compression, but becomes antiferromagnetic under tension. Particularly, the transition occurs under a feasible in-plane strain around 1.8%. Accompanied by the transition of the magnetic ground state, it undergoes a transition from magnetic-metal to half-metal to half-semiconductor to spin-relevant semiconductor when strain varies from -15% to 10%. We attribute these transitions to the variation of the d-orbitals of Cr atoms and the p-orbitals of I atoms. Generally, we report a series of magnetic and electronic phase transition in strained CrI3, which will help both theoretical and experimental researchers for further understanding of the tunable electronic and magnetic properties of CrI3 and their analogous.
SnSe monolayer with orthorhombic Pnma GeS structure is an important two-dimensional (2D) indirect band gap material at room temperature. Based on first-principles density functional theory calculations, we present systematic studies on the electronic and magnetic properties of X (X = Ga, In, As, Sb) atoms doped SnSe monolayer. The calculated electronic structures show that Ga-doped system maintains semiconducting property while In-doped SnSe monolayer is half-metal. The As- and Sb- doped SnSe systems present the characteristics of n-type semiconductor. Moreover, all considered substitutional doping cases induce magnetic ground states with the magnetic moment of 1{mu}B. In addition, the calculated formation energies also show that four types of doped systems are thermodynamic stable. These results provide a new route for the potential applications of doped SnSe monolayer in 2D photoelectronic and magnetic semiconductor devices.
We investigate the influence of artificial defects (small holes) inserted into magnetic nanodisks on the vortex core dynamics. One and two holes (antidots) are considered. In general, the core falls into the hole but, in particular, we would like to remark an interesting phenomenon not yet observed, which is the vortex core switching induced by the vortex-hole interactions. It occurs for the case with only one hole and for very special conditions involving the hole size and position as well as the disk size. Any small deformation in the disk geometry such as the presence of a second antidot changes completely the vortex dynamics and the vortex core eventually falls into one of the defects. After trapped, the vortex center still oscillates with a very high frequency and small amplitude around the defect center.
We report experimental and theoretical evidence of strong electron-plasmon interaction in n-doped single-layer MoS2. Angle-resolved photoemission spectroscopy (ARPES) measurements reveal the emergence of distinctive signatures of polaronic coupling i n the electron spectral function. Calculations based on many-body perturbation theory illustrate that electronic coupling to two-dimensional (2D) carrier plasmons provides an exhaustive explanation of the experimental spectral features and their energies. These results constitute compelling evidence of the formation of plasmon-induced polaronic quasiparticles, suggesting that highly-doped transition-metal dichalcogenides may provide a new platform to explore strong-coupling phenomena between electrons and plasmons in 2D.
Being atomically thin and amenable to external controls, two-dimensional (2D) materials offer a new paradigm for the realization of patterned qubit fabrication and operation at room temperature for quantum information sciences applications. Here we s how that the antisite defect in 2D transition metal dichalcogenides (TMDs) can provide a controllable solid-state spin qubit system. Using high-throughput atomistic simulations, we identify several neutral antisite defects in TMDs that lie deep in the bulk band gap and host a paramagnetic triplet ground state. Our in-depth analysis reveals the presence of optical transitions and triplet-singlet intersystem crossing processes for fingerprinting these defect qubits. As an illustrative example, we discuss the initialization and readout principles of an antisite qubit in WS2, which is expected to be stable against interlayer interactions in a multilayer structure for qubit isolation and protection in future qubit-based devices. Our study opens a new pathway for creating scalable, room-temperature spin qubits in 2D TMDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا