ﻻ يوجد ملخص باللغة العربية
We study the heat relaxation in current biased metallic films in the regime of strong electron-phonon coupling. A thermal gradient in the direction normal to the film is predicted, with a spatial temperature profile determined by the temperature-dependent heat conduction. In the case of strong phonon scattering the heat conduction occurs predominantly via the electronic system and the profile is parabolic. This regime leads to the linear dependence of the noise temperature as a function of voltage bias, in spite of the fact that all the dimensions of the film are large compared to the electron-phonon relaxation length. This is in stark contrast to the conventional scenario of relaxation limited by the electron-phonon scattering rate. A preliminary experimental study of a 200 nm thick NbN film indicates the relevance of our model for materials used in superconducting nanowire single-photon detectors.
The performance of low temperature detectors utilizing thermal effects is determined by their energy relaxation properties. Usually, heat transport experiments in mesoscopic structures are carried out in the steady-state, where temperature gradients
We predict spin Hall angles up to 80% for ultrathin noble metal films with substitutional Bi impurities. The colossal spin Hall effect is caused by enhancement of the spin Hall conductivity in reduced sample dimension and a strong reduction of the ch
We compute the transient dynamics of phonons in contact with high energy hot charge carriers in 12 polar and non-polar semiconductors, using a first-principles Boltzmann transport framework. For most materials, we find that the decay in electronic te
Magnetic skyrmions are topologically-distinct swirls of magnetic moments which display particle-like behaviour, including the ability to undergo thermally-driven diffusion. In this paper we study the thermally activated motion of arrays of skyrmions
An efficient order$-N$ real-space Kubo approach is developed for the calculation of the thermal conductivity of complex disordered materials. The method, which is based on the Chebyshev polynomial expansion of the time evolution operator and the Lanc