ﻻ يوجد ملخص باللغة العربية
Among the greatest challenges in understanding ultra-cool brown dwarf and exoplanet atmospheres is the evolution of cloud structure as a function of temperature and gravity. In this study, we present the rotational modulations of GU Psc b -- a rare mid-T spectral type planetary-mass companion at the end of the L/T spectral type transition. Based on the HST/WFC3 1.1-1.67$rm, mu m$ time-series spectra, we observe a quasi-sinusoidal light curve with a peak-to-trough flux variation of 2.7 % and a minimum period of eight hours. The rotation-modulated spectral variations are weakly wavelength-dependent, or largely gray between 1.1-1.67$rm,mu$m. The gray modulations indicate that heterogeneous clouds are present in the photosphere of this low-gravity mid-T dwarf. We place the color and brightness variations of GU Psc b in the context of rotational modulations reported for mid-L to late-T dwarfs. Based on these observations, we report a tentative trend: mid-to-late T dwarfs become slightly redder in $J-H$ color with increasing $J$-band brightness, while L dwarfs become slightly bluer with increasing brightness. If this trend is verified with more T-dwarf samples, it suggests that in addition to the mostly gray modulations, there is a second-order spectral-type dependence on the nature of rotational modulations.
We present a photometric $J$-band variability study of GU Psc b, a T3.5 co-moving planetary-mass companion (9-13$M_{rm{Jup}}$) to a young ($sim$150 Myr) M3 member of the AB Doradus Moving Group. The large separation between GU Psc b and its host star
We present the discovery of a co-moving planetary-mass companion ~42 (~2000 AU) from a young M3 star, GU Psc, likely member of the young AB Doradus Moving Group (ABDMG). The companion was first identified via its distinctively red i - z color (> 3.5)
Time-resolved observations of brown dwarfs rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes,
Measurements of photometric variability at different wavelengths provide insights into the vertical cloud structure of brown dwarfs and planetary-mass objects. In seven Hubble Space Telescope consecutive orbits, spanning $sim$10 h of observing time},
Directly-imaged planetary-mass companions offer unique opportunities in atmospheric studies of exoplanets. They share characteristics of both brown dwarfs and transiting exoplanets, therefore, are critical for connecting atmospheric characterizations