ترغب بنشر مسار تعليمي؟ اضغط هنا

Cloud Atlas: Rotational Spectral Modulations and potential Sulfide Clouds in the Planetary-mass, Late T-type Companion Ross 458C

85   0   0.0 ( 0 )
 نشر من قبل Elena Manjavacas
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Measurements of photometric variability at different wavelengths provide insights into the vertical cloud structure of brown dwarfs and planetary-mass objects. In seven Hubble Space Telescope consecutive orbits, spanning $sim$10 h of observing time}, we obtained time-resolved spectroscopy of the planetary-mass T8-dwarf Ross 458C using the near-infrared Wide Field Camera 3. We found spectrophotometric variability with a peak-to-peak signal of 2.62$pm$0.02 % (in the 1.10-1.60~$mu$m white light curve). Using three different methods, we estimated a rotational period of 6.75$pm$1.58~h for the white light curve, and similar periods for narrow $J$- and $H$- band light curves. Sine wave fits to the narrow $J$- and $H$-band light curves suggest a tentative phase shift between the light curves with wavelength when we allow different periods between both light curves. If confirmed, this phase shift may be similar to the phase shift detected earlier for the T6.5 spectral type 2MASS J22282889-310262. We find that, in contrast with 2M2228, the variability of Ross~458C shows evidence for a {color trend} within the narrow $J$-band, but gray variations in the narrow $H$-band. The spectral time-resolved variability of Ross 458C might be potentially due to heterogeneous sulfide clouds in the atmosphere of the object. Our discovery extends the study of spectral modulations of condensate clouds to the coolest T dwarfs, planetary-mass companions.



قيم البحث

اقرأ أيضاً

Condensate clouds fundamentally impact the atmospheric structure and spectra of exoplanets and brown dwarfs but the connections between surface gravity, cloud structure, dust in the upper atmosphere, and the red colors of some brown dwarfs remain poo rly understood. Rotational modulations enable the study of different clouds in the same atmosphere, thereby providing a method to isolate the effects of clouds. Here we present the discovery of high peak-to-peak amplitude (8%) rotational modulations in a low-gravity, extremely red (J-Ks=2.55) L6 dwarf WISEP J004701.06+680352.1 (W0047). Using the Hubble Space Telescope (HST) time-resolved grism spectroscopy we find a best-fit rotational period (13.20$pm$0.14 hours) with a larger amplitude at 1.1 micron than at 1.7 micron. This is the third largest near-infrared variability amplitude measured in a brown dwarf, demonstrating that large-amplitude variations are not limited to the L/T transition but are present in some extremely red L-type dwarfs. We report a tentative trend between the wavelength dependence of relative amplitude, possibly proxy for small dust grains lofted in the upper atmosphere, and the likelihood of large-amplitude variability. By assuming forsterite as haze particle, we successfully explain the wavelength dependent amplitude with submicron-sized haze particles sizes of around 0.4 {mu}m. W0047 links the earlier spectral and later spectral type brown dwarfs in which rotational modulations have been observed, the large amplitude variations in this object make this a benchmark brown dwarf for the study of cloud properties close to the L/T transition.
Time-resolved observations of brown dwarfs rotational modulations provide powerful insights into the properties of condensate clouds in ultra-cool atmospheres. Multi-wavelength light curves reveal cloud vertical structures, condensate particle sizes, and cloud morphology, which directly constrain condensate cloud and atmospheric circulation models. We report results from Hubble Space Telescope/Wide Field Camera 3 near-infrared G141 taken in six consecutive orbits observations of HN Peg B, an L/T transition brown dwarf companion to a G0V type star. The best-fit sine wave to the $1.1-1.7mu$m broadband light curve has the amplitude of $1.206pm0.025%$ and period of $15.4pm0.5$ hr. The modulation amplitude has no detectable wavelength dependence except in the 1.4 $mu$m water absorption band, indicating that the characteristic condensate particle sizes are large ($>1mu$m). We detect significantly ($4.4sigma$) lower modulation amplitude in the 1.4$mu$m water absorption band, and find that HN Peg Bs spectral modulation resembles those of early T type brown dwarfs. We also describe a new empirical interpolation method to remove spectral contamination from the bright host star. This method may be applied in other high-contrast time-resolved observations with WFC3.
Among the greatest challenges in understanding ultra-cool brown dwarf and exoplanet atmospheres is the evolution of cloud structure as a function of temperature and gravity. In this study, we present the rotational modulations of GU Psc b -- a rare m id-T spectral type planetary-mass companion at the end of the L/T spectral type transition. Based on the HST/WFC3 1.1-1.67$rm, mu m$ time-series spectra, we observe a quasi-sinusoidal light curve with a peak-to-trough flux variation of 2.7 % and a minimum period of eight hours. The rotation-modulated spectral variations are weakly wavelength-dependent, or largely gray between 1.1-1.67$rm,mu$m. The gray modulations indicate that heterogeneous clouds are present in the photosphere of this low-gravity mid-T dwarf. We place the color and brightness variations of GU Psc b in the context of rotational modulations reported for mid-L to late-T dwarfs. Based on these observations, we report a tentative trend: mid-to-late T dwarfs become slightly redder in $J-H$ color with increasing $J$-band brightness, while L dwarfs become slightly bluer with increasing brightness. If this trend is verified with more T-dwarf samples, it suggests that in addition to the mostly gray modulations, there is a second-order spectral-type dependence on the nature of rotational modulations.
Bayesian atmospheric retrieval tools can place constraints on the properties of brown dwarfs and hot Jupiters atmospheres. To fully exploit these methods, high signal-to-noise spectral libraries with well-understood uncertainties are essential. We pr esent a high signal-to-noise spectral library (1.10-1.69 microns) of the thermal emission of 76 brown dwarfs and hot Jupiters. All our spectra have been acquired with the Hubble Space Telescopes Wide Field Camera 3 instrument and its G141 grism. The near-infrared spectral types of these objects range from L4 to Y1. Eight of our targets have estimated masses below the deuterium-burning limit. We analyze the database to identify peculiar objects and/or multiple systems, concluding that this sample includes two very-low-surface-gravity objects and five intermediate-surface-gravity objects. In addition, spectral indices designed to search for composite atmosphere brown dwarfs, indicate that eight objects in our sample are strong candidates to have such atmospheres. None of these objects are overluminous, thus their composite atmospheres are unlikely a companion-induced artifact. Five of the eight confirmed candidates have been reported as photometrically variable, suggesting that composite atmospheric indices are useful in identifying brown dwarfs with strongly heterogeneous cloud covers. We compare hot Jupiters and brown dwarfs in a near-infrared color-magnitude diagram. We confirm that the coldest hot Jupiters in our sample have spectra similar to mid-L dwarfs, and the hottest hot Jupiters have spectra similar to those of M-dwarfs. Our sample provides a uniform dataset of a broad range of ultracool atmospheres, allowing large-scale, comparative studies, and providing a HST legacy spectral library.
We use the Wide Field Camera 3 on the {sl Hubble Space Telescope} to spectrophotometrically monitor the young L7.5 companion HD~203030B. Our time series reveal photometric variability at 1.27,$mu$m and 1.39,$mu$m on time scales compatible with rotati on. We find a rotation period of $7.5^{+0.6}_{-0.5}$ h: comparable to those observed in other brown dwarfs and planetary-mass companions younger than 300 Myr. We measure variability amplitudes of $1.1pm0.3%$ (1.27,$mu$m) and $1.7pm0.4%$ (1.39,$mu$m), and a phase lag of 56$^circpm$28$^circ$ between the two light curves. We attribute the difference in photometric amplitudes and phases to a patchy cloud layer that is sinking below the level where water vapor becomes opaque. HD 203030B and the few other known variable young late-L dwarfs are unlike warmer (earlier-type and/or older) L dwarfs, for which variability is much less wavelength-dependent across the 1.1--1.7$mu$m region. We further suggest that a sinking of the top-most cloud deck below the level where water or carbon monoxide gas become opaque may also explain the often enhanced variability amplitudes of even earlier-type low-gravity L dwarfs. Because these condensate and gas opacity levels are already well-differentiated in T dwarfs, we do not expect the same variability amplitude enhancement in young vs. old T dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا