ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of the Optimization Landscapes for Overcomplete Representation Learning

396   0   0.0 ( 0 )
 نشر من قبل Qing Qu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study nonconvex optimization landscapes for learning overcomplete representations, including learning (i) sparsely used overcomplete dictionaries and (ii) convolutional dictionaries, where these unsupervised learning problems find many applications in high-dimensional data analysis. Despite the empirical success of simple nonconvex algorithms, theoretical justifications of why these methods work so well are far from satisfactory. In this work, we show these problems can be formulated as $ell^4$-norm optimization problems with spherical constraint, and study the geometric properties of their nonconvex optimization landscapes. For both problems, we show the nonconvex objectives have benign (global) geometric structures, in the sense that every local minimizer is close to one of the target solutions and every saddle point exhibits negative curvature. This discovery enables the development of guaranteed global optimization methods using simple initializations. For both problems, we show the nonconvex objectives have benign geometric structures -- every local minimizer is close to one of the target solutions and every saddle point exhibits negative curvature -- either in the entire space or within a sufficiently large region. This discovery ensures local search algorithms (such as Riemannian gradient descent) with simple initializations approximately find the target solutions. Finally, numerical experiments justify our theoretical discoveries.



قيم البحث

اقرأ أيضاً

This work addresses the problem of learning sparse representations of tensor data using structured dictionary learning. It proposes learning a mixture of separable dictionaries to better capture the structure of tensor data by generalizing the separa ble dictionary learning model. Two different approaches for learning mixture of separable dictionaries are explored and sufficient conditions for local identifiability of the underlying dictionary are derived in each case. Moreover, computational algorithms are developed to solve the problem of learning mixture of separable dictionaries in both batch and online settings. Numerical experiments are used to show the usefulness of the proposed model and the efficacy of the developed algorithms.
The overall predictive uncertainty of a trained predictor can be decomposed into separate contributions due to epistemic and aleatoric uncertainty. Under a Bayesian formulation, assuming a well-specified model, the two contributions can be exactly ex pressed (for the log-loss) or bounded (for more general losses) in terms of information-theoretic quantities (Xu and Raginsky, 2020). This paper addresses the study of epistemic uncertainty within an information-theoretic framework in the broader setting of Bayesian meta-learning. A general hierarchical Bayesian model is assumed in which hyperparameters determine the per-task priors of the model parameters. Exact characterizations (for the log-loss) and bounds (for more general losses) are derived for the epistemic uncertainty - quantified by the minimum excess meta-risk (MEMR)- of optimal meta-learning rules. This characterization is leveraged to bring insights into the dependence of the epistemic uncertainty on the number of tasks and on the amount of per-task training data. Experiments are presented that compare the proposed information-theoretic bounds, evaluated via neural mutual information estimators, with the performance of a novel approximate fully Bayesian meta-learning strategy termed Langevin-Stein Bayesian Meta-Learning (LS-BML).
We study the problem of learning overcomplete HMMs---those that have many hidden states but a small output alphabet. Despite having significant practical importance, such HMMs are poorly understood with no known positive or negative results for effic ient learning. In this paper, we present several new results---both positive and negative---which help define the boundaries between the tractable and intractable settings. Specifically, we show positive results for a large subclass of HMMs whose transition matrices are sparse, well-conditioned, and have small probability mass on short cycles. On the other hand, we show that learning is impossible given only a polynomial number of samples for HMMs with a small output alphabet and whose transition matrices are random regular graphs with large degree. We also discuss these results in the context of learning HMMs which can capture long-term dependencies.
A common strategy in modern learning systems is to learn a representation that is useful for many tasks, a.k.a. representation learning. We study this strategy in the imitation learning setting for Markov decision processes (MDPs) where multiple expe rts trajectories are available. We formulate representation learning as a bi-level optimization problem where the outer optimization tries to learn the joint representation and the inner optimization encodes the imitation learning setup and tries to learn task-specific parameters. We instantiate this framework for the imitation learning settings of behavior cloning and observation-alone. Theoretically, we show using our framework that representation learning can provide sample complexity benefits for imitation learning in both settings. We also provide proof-of-concept experiments to verify our theory.
170 - Jun Zhang , Yao-Kun Lei , Xing Che 2019
In this paper we first analyzed the inductive bias underlying the data scattered across complex free energy landscapes (FEL), and exploited it to train deep neural networks which yield reduced and clustered representation for the FEL. Our parametric method, called Information Distilling of Metastability (IDM), is end-to-end differentiable thus scalable to ultra-large dataset. IDM is also a clustering algorithm and is able to cluster the samples in the meantime of reducing the dimensions. Besides, as an unsupervised learning method, IDM differs from many existing dimensionality reduction and clustering methods in that it neither requires a cherry-picked distance metric nor the ground-true number of clusters, and that it can be used to unroll and zoom-in the hierarchical FEL with respect to different timescales. Through multiple experiments, we show that IDM can achieve physically meaningful representations which partition the FEL into well-defined metastable states hence are amenable for downstream tasks such as mechanism analysis and kinetic modeling.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا