ترغب بنشر مسار تعليمي؟ اضغط هنا

Learning Overcomplete HMMs

111   0   0.0 ( 0 )
 نشر من قبل Vatsal Sharan
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the problem of learning overcomplete HMMs---those that have many hidden states but a small output alphabet. Despite having significant practical importance, such HMMs are poorly understood with no known positive or negative results for efficient learning. In this paper, we present several new results---both positive and negative---which help define the boundaries between the tractable and intractable settings. Specifically, we show positive results for a large subclass of HMMs whose transition matrices are sparse, well-conditioned, and have small probability mass on short cycles. On the other hand, we show that learning is impossible given only a polynomial number of samples for HMMs with a small output alphabet and whose transition matrices are random regular graphs with large degree. We also discuss these results in the context of learning HMMs which can capture long-term dependencies.



قيم البحث

اقرأ أيضاً

Finding overcomplete latent representations of data has applications in data analysis, signal processing, machine learning, theoretical neuroscience and many other fields. In an overcomplete representation, the number of latent features exceeds the d ata dimensionality, which is useful when the data is undersampled by the measurements (compressed sensing, information bottlenecks in neural systems) or composed from multiple complete sets of linear features, each spanning the data space. Independent Components Analysis (ICA) is a linear technique for learning sparse latent representations, which typically has a lower computational cost than sparse coding, its nonlinear, recurrent counterpart. While well suited for finding complete representations, we show that overcompleteness poses a challenge to existing ICA algorithms. Specifically, the coherence control in existing ICA algorithms, necessary to prevent the formation of duplicate dictionary features, is ill-suited in the overcomplete case. We show that in this case several existing ICA algorithms have undesirable global minima that maximize coherence. Further, by comparing ICA algorithms on synthetic data and natural images to the computationally more expensive sparse coding solution, we show that the coherence control biases the exploration of the data manifold, sometimes yielding suboptimal solutions. We provide a theoretical explanation of these failures and, based on the theory, propose improved overcomplete ICA algorithms. All told, this study contributes new insights into and methods for coherence control for linear ICA, some of which are applicable to many other, potentially nonlinear, unsupervised learning methods.
395 - Qing Qu , Yuexiang Zhai , Xiao Li 2019
We study nonconvex optimization landscapes for learning overcomplete representations, including learning (i) sparsely used overcomplete dictionaries and (ii) convolutional dictionaries, where these unsupervised learning problems find many application s in high-dimensional data analysis. Despite the empirical success of simple nonconvex algorithms, theoretical justifications of why these methods work so well are far from satisfactory. In this work, we show these problems can be formulated as $ell^4$-norm optimization problems with spherical constraint, and study the geometric properties of their nonconvex optimization landscapes. For both problems, we show the nonconvex objectives have benign (global) geometric structures, in the sense that every local minimizer is close to one of the target solutions and every saddle point exhibits negative curvature. This discovery enables the development of guaranteed global optimization methods using simple initializations. For both problems, we show the nonconvex objectives have benign geometric structures -- every local minimizer is close to one of the target solutions and every saddle point exhibits negative curvature -- either in the entire space or within a sufficiently large region. This discovery ensures local search algorithms (such as Riemannian gradient descent) with simple initializations approximately find the target solutions. Finally, numerical experiments justify our theoretical discoveries.
A continual learning agent should be able to build on top of existing knowledge to learn on new data quickly while minimizing forgetting. Current intelligent systems based on neural network function approximators arguably do the opposite---they are h ighly prone to forgetting and rarely trained to facilitate future learning. One reason for this poor behavior is that they learn from a representation that is not explicitly trained for these two goals. In this paper, we propose OML, an objective that directly minimizes catastrophic interference by learning representations that accelerate future learning and are robust to forgetting under online updates in continual learning. We show that it is possible to learn naturally sparse representations that are more effective for online updating. Moreover, our algorithm is complementary to existing continual learning strategies, such as MER and GEM. Finally, we demonstrate that a basic online updating strategy on representations learned by OML is competitive with rehearsal based methods for continual learning. We release an implementation of our method at https://github.com/khurramjaved96/mrcl .
We tackle the Multi-task Batch Reinforcement Learning problem. Given multiple datasets collected from different tasks, we train a multi-task policy to perform well in unseen tasks sampled from the same distribution. The task identities of the unseen tasks are not provided. To perform well, the policy must infer the task identity from collected transitions by modelling its dependency on states, actions and rewards. Because the different datasets may have state-action distributions with large divergence, the task inference module can learn to ignore the rewards and spuriously correlate $textit{only}$ state-action pairs to the task identity, leading to poor test time performance. To robustify task inference, we propose a novel application of the triplet loss. To mine hard negative examples, we relabel the transitions from the training tasks by approximating their reward functions. When we allow further training on the unseen tasks, using the trained policy as an initialization leads to significantly faster convergence compared to randomly initialized policies (up to $80%$ improvement and across 5 different Mujoco task distributions). We name our method $textbf{MBML}$ ($textbf{M}text{ulti-task}$ $textbf{B}text{atch}$ RL with $textbf{M}text{etric}$ $textbf{L}text{earning}$).
What makes a task relatively more or less difficult for a machine compared to a human? Much AI/ML research has focused on expanding the range of tasks that machines can do, with a focus on whether machines can beat humans. Allowing for differences in scale, we can seek interesting (anomalous) pairs of tasks T, T. We define interesting in this way: The harder to learn relation is reversed when comparing human intelligence (HI) to AI. While humans seems to be able to understand problems by formulating rules, ML using neural networks does not rely on constructing rules. We discuss a novel approach where the challenge is to perform well under rules that have been created by human beings. We suggest that this provides a rigorous and precise pathway for understanding the difference between the two kinds of learning. Specifically, we suggest a large and extensible class of learning tasks, formulated as learning under rules. With these tasks, both the AI and HI will be studied with rigor and precision. The immediate goal is to find interesting groundtruth rule pairs. In the long term, the goal will be to understand, in a generalizable way, what distinguishes interesting pairs from ordinary pairs, and to define saliency behind interesting pairs. This may open new ways of thinking about AI, and provide unexpected insights into human learning.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا