ﻻ يوجد ملخص باللغة العربية
We consider a nonlinear reaction diffusion system of parabolic type known as the monodomain equations, which model the interaction of the electric current in a cell. Together with the FitzHugh-Nagumo model for the nonlinearity they represent defibrillation processes of the human heart. We study a fairly general type with co-located inputs and outputs describing both boundary and distributed control and observation. The control objective is output trajectory tracking with prescribed performance. To achieve this we employ the funnel controller, which is model-free and of low complexity. The controller introduces a nonlinear and time-varying term in the closed-loop system, for which we prove existence and uniqueness of solutions. Additionally, exploiting the parabolic nature of the problem, we obtain Holder continuity of the state, inputs and outputs. We illustrate our results by a simulation of a standard test example for the termination of reentry waves.
We investigate the stability of traveling-pulse solutions to the stochastic FitzHugh-Nagumo equations with additive noise. Special attention is given to the effect of small noise on the classical deterministically stable traveling pulse. Our method i
In this article, we construct and analyse explicit numerical splitting methods for a class of semi-linear stochastic differential equations (SDEs) with additive noise, where the drift is allowed to grow polynomially and satisfies a global one-sided L
We use geometric singular perturbation techniques combined with an action functional approach to study traveling pulse solutions in a three-component FitzHugh--Nagumo model. First, we derive the profile of traveling $1$-pulse solutions with undetermi
The existence of a random attractor for the stochastic FitzHugh-Nagumo system defined on an unbounded domain is established. The pullback asymptotic compactness of the stochastic system is proved by uniform estimates on solutions for large space and
We propose an optimal control approach in order to identify the nonlinearity in the monodomain model, from given data. This data-driven approach gives an answer to the problem of selecting the model when studying phenomena related to cardiac electrop