ﻻ يوجد ملخص باللغة العربية
The existence of a random attractor for the stochastic FitzHugh-Nagumo system defined on an unbounded domain is established. The pullback asymptotic compactness of the stochastic system is proved by uniform estimates on solutions for large space and time variables. These estimates are obtained by a cut-off technique.
The existence of a pullback attractor is established for the singularly perturbed FitzHugh-Nagumo system defined on the entire space $R^n$ when external terms are unbounded in a phase space. The pullback asymptotic compactness of the system is proved
This paper is concerned with the asymptotic behavior of solutions of the two-dimensional Navier-Stokes equations with both non-autonomous deterministic and stochastic terms defined on unbounded domains. We first introduce a continuous cocycle for the
We prove the existence of a compact random attractor for the stochastic Benjamin-Bona-Mahony Equation defined on an unbounded domain. This random attractor is invariant and attracts every pulled-back tempered random set under the forward flow. The as
We investigate the stability of traveling-pulse solutions to the stochastic FitzHugh-Nagumo equations with additive noise. Special attention is given to the effect of small noise on the classical deterministically stable traveling pulse. Our method i
This paper is concerned with pullback attractors of the stochastic p-Laplace equation defined on the entire space R^n. We first establish the asymptotic compactness of the equation in L^2(R^n) and then prove the existence and uniqueness of non-autono