ﻻ يوجد ملخص باللغة العربية
We report the lens mass and distance measurements of the nearby microlensing event TCP J05074264+2447555. We measure the microlens parallax vector ${pi}_{rm E}$ using Spitzer and ground-based light curves with constraints on the direction of lens-source relative proper motion derived from Very Large Telescope Interferometer (VLTI) GRAVITY observations. Combining this ${pi}_{rm E}$ determination with the angular Einstein radius $theta_{rm E}$ measured by VLTI GRAVITY observations, we find that the lens is a star with mass $M_{rm L} = 0.495 pm 0.063~M_{odot}$ at a distance $D_{rm L} = 429 pm 21~{rm pc}$. We find that the blended light basically all comes from the lens. The lens-source proper motion is $mu_{rm rel,hel} = 26.55 pm 0.36~{rm mas,yr^{-1}}$, so with currently available adaptive-optics (AO) instruments, the lens and source can be resolved in 2021. This is the first microlensing event whose lens mass is unambiguously measured by interferometry + satellite parallax observations, which opens a new window for mass measurements of isolated objects such as stellar-mass black holes.
We used the Tycho-Gaia Astrometric Solution catalogue, part of the Gaia Data Release 1, to search for candidate astrometric microlensing events expected to occur within the remaining lifetime of the Gaia satellite. Our search yielded one promising ca
We present a new approach in the study of the Initial Mass function (IMF) in external galaxies based on quasar microlensing observations. We use measurements of quasar microlensing magnifications in 24 lensed quasars to estimate the average mass of t
We analyze the gravitational binary-lensing event OGLE-2016-BLG-0156, for which the lensing light curve displays pronounced deviations induced by microlens-parallax effects. The light curve exhibits 3 distinctive widely-separated peaks and we find th
We present the analysis of the caustic-crossing binary microlensing event OGLE-2017-BLG-0039. Thanks to the very long duration of the event, with an event time scale $t_{rm E}sim 130$ days, the microlens parallax is precisely measured despite its sma
The VLTI instrument GRAVITY combines the beams from four telescopes and provides phase-referenced imaging as well as precision-astrometry of order 10 microarcseconds by observing two celestial objects in dual-field mode. Their angular separation can