ﻻ يوجد ملخص باللغة العربية
We analyze the gravitational binary-lensing event OGLE-2016-BLG-0156, for which the lensing light curve displays pronounced deviations induced by microlens-parallax effects. The light curve exhibits 3 distinctive widely-separated peaks and we find that the multiple-peak feature provides a very tight constraint on the microlens-parallax effect, enabling us to precisely measure the microlens parallax $pi_{rm E}$. All the peaks are densely and continuously covered from high-cadence survey observations using globally located telescopes and the analysis of the peaks leads to the precise measurement of the angular Einstein radius $theta_{rm E}$. From the combination of the measured $pi_{rm E}$ and $theta_{rm E}$, we determine the physical parameters of the lens. It is found that the lens is a binary composed of two M dwarfs with masses $M_1=0.18pm 0.01 M_odot$ and $M_2=0.16pm 0.01 M_odot$ located at a distance $D_{rm L}= 1.35pm 0.09 {rm kpc}$. According to the estimated lens mass and distance, the flux from the lens comprises an important fraction, $sim 25%$, of the blended flux. The bright nature of the lens combined with the high relative lens-source motion, $mu=6.94pm 0.50 {rm mas} {rm yr}^{-1}$, suggests that the lens can be directly observed from future high-resolution follow-up observations.
We present the analysis of the caustic-crossing binary microlensing event OGLE-2017-BLG-0039. Thanks to the very long duration of the event, with an event time scale $t_{rm E}sim 130$ days, the microlens parallax is precisely measured despite its sma
We report the discovery of a binary composed of two brown dwarfs, based on the analysis of the microlensing event OGLE-2016-BLG-1469. Thanks to detection of both finite-source and microlens-parallax effects, we are able to measure both the masses $M_
We present the first space-based microlens parallax measurement of an isolated star. From the striking differences in the lightcurve as seen from Earth and from Spitzer (~1 AU to the West), we infer a projected velocity v_helio,projected ~ 250 km/s,
We report the first mass and distance measurement of a caustic-crossing binary system OGLE-2014-BLG-1050L using the space-based microlens parallax method. emph{Spitzer} captured the second caustic-crossing of the event, which occurred $sim$10 days be
We report discovery of the lowest mass ratio exoplanet to be found by the microlensing method in the light curve of the event OGLE~2016--BLG--1195. This planet revealed itself as a small deviation from a microlensing single lens profile from an exami