ﻻ يوجد ملخص باللغة العربية
The VLTI instrument GRAVITY combines the beams from four telescopes and provides phase-referenced imaging as well as precision-astrometry of order 10 microarcseconds by observing two celestial objects in dual-field mode. Their angular separation can be determined from their differential OPD (dOPD) when the internal dOPDs in the interferometer are known. Here, we present the general overview of the novel metrology system which performs these measurements. The metrology consists of a three-beam laser system and a homodyne detection scheme for three-beam interference using phase-shifting interferometry in combination with lock-in amplifiers. Via this approach the metrology system measures dOPDs on a nanometer-level.
GRAVITY is an adaptive optics assisted Beam Combiner for the second generation VLTI instrumentation. The instrument will provide high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the astronomical K-band for faint
GRAVITY is the second generation VLT Interferometer (VLTI) instrument for high-precision narrow-angle astrometry and phase-referenced interferometric imaging. The laser metrology system of GRAVITY is at the heart of its astrometric mode, which must m
In this paper we present the most promising science cases for a new generation visible instrument on the VLTI and the conceptual idea for the instrumental configuration. We also present a statistical study of the potential targets that may be accessi
GRAVITY is a second generation VLTI instrument, combining the light of four telescopes and two objects simultaneously. The main goal is to obtain astrometrically accurate information. Besides correctly measured stellar phases this requires the knowle
The VLTI instrument GRAVITY will provide very powerful astrometry by combining the light from four telescopes for two objects simultaneously. It will measure the angular separation between the two astronomical objects to a precision of 10 microarcsec