ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust implementation of quantum gates despite always-on exchange coupling in silicon double quantum dots

67   0   0.0 ( 0 )
 نشر من قبل Utkan G\\\"ung\\\"ord\\\"u
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Addressability of spin qubits in a silicon double quantum dot setup in the (1,1) charge configuration relies on having a large difference between the Zeeman splittings of the electrons. When the difference is not sufficiently large, the rotating wave approximation becomes inaccurate. We consider a device working in this regime, with always-on exchange coupling, and describe how a CZ gate and arbitrary one-qubit gates which are robust against charge noise can be implemented by smoothly pulsing the microwave source, while eliminating the crosstalk. We find that the most significant deviations from the rotating wave approximation, which are analogous to the Bloch-Siegert shift in a two-level system, can be compensated using local virtual gates.

قيم البحث

اقرأ أيضاً

We theoretically analyze the errors in one- and two-qubit gates in SiMOS and Si/SiGe spin qubit experiments, and present a pulse sequence which can suppress the errors in exchange coupling due to charge noise using ideal local rotations. In practice, the overall fidelity of the pulse sequence will be limited only by the quality of the single-qubit gates available: the C-phase infidelity comes out to be $approx 2.5 times$ the infidelity of the single-qubit operations. Based on experimental data, we model the errors and show that C-phase gate infidelities can be suppressed by two orders in magnitude. Our pulse sequence is simple and we expect an experimental implementation would be relatively straightforward. We also evaluate the performance of this gate against $1/f$ noise. Assuming a soft ultraviolet cutoff, we show that the pulse sequence designed for quasistatic noise still performs well when the cutoff occurs below $sim 1$MHz given fast enough one-qubit Rabi frequencies, suppressing the infidelity by an order of magnitude compared to the existing direct adiabatic protocol. We also analyze the effects of nonadiabaticity during finite rise periods, and find that adiabaticity is not a limitation for the current values of exchange coupling.
The presence of valley states is a significant obstacle to realizing quantum information technologies in Silicon quantum dots, as leakage into alternate valley states can introduce errors into the computation. We use a perturbative analytical approac h to study the dynamics of exchange-coupled quantum dots with valley degrees of freedom. We show that if the valley splitting is large and electrons are not properly initialized to valley eigenstates, then time evolution of the system will lead to spin-valley entanglement. Spin-valley entanglement will also occur if the valley splitting is small and electrons are not initialized to the same valley state. Additionally, we show that for small valley splitting, spin-valley entanglement does not affect measurement probabilities of two-qubit systems; however, systems with more qubits will be affected. This means that two-qubit gate fidelities measured in two-qubit systems may miss the effects of valley degrees of freedom. Our work shows how the existence of valleys may adversely affect multiqubit fidelities even when the system temperature is very low.
102 - Peihao Huang 2021
A spin qubit in semiconductor quantum dots holds promise for quantum information processing for scalability and long coherence time. An important semiconductor qubit system is a double quantum dot trapping two electrons or holes, whose spin states en code either a singlet-triplet qubit or two single-spin qubits coupled by exchange interaction. In this article, we report progress on spin dephasing of two exchange-coupled spins in a double quantum dot. We first discuss the schemes of two-qubit gates and qubit encodings in gate-defined quantum dots or donor atoms based on the exchange interaction. Then, we report the progress on spin dephasing of a singlet-triplet qubit or a two-qubit gate. The methods of suppressing spin dephasing are further discussed. The understanding of spin dephasing may provide insights into the realization of high-fidelity quantum gates for spin-based quantum computing.
Quantum computation requires high-fidelity single-qubit and two-qubit gates on a scalable platform. Silicon spin qubits are a promising platform toward realization of this goal. In this paper we show how to perform single-qubit and CZ gates in a line ar chain of three spin qubits with always-on exchange coupling, which is relevant for certain dot- and donor-based silicon devices. We also show how to make the CZ gate robust against both charge noise and pulse length error using a two-tone pulse shaping method. The robust pulse maintains a fidelity of 99.99% at 3.5% fluctuations in exchange or pulse amplitude, which is an improvement over the uncorrected pulses where this fidelity can only be maintained for fluctuations in exchange up to 2% or up to 0.2% in amplitude.
We propose a scheme for a two-qubit conditional phase gate by quantum Zeno effect with semiconductor quantum dots. The system consists of two charged dots and one ancillary dot that can perform Rabi oscillations under a resonant laser pulse. The quan tum Zeno effect is induced by phonon-assisted exciton relaxation between the ancillary dot and the charged dots, which is equivalent to a continuous measurement. We solve analytically the master equation and simulate the dynamics of the system using a realistic set of parameters. In contrast to standard schemes, larger phonon relaxation rates increase the fidelity of the operations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا