ﻻ يوجد ملخص باللغة العربية
Addressability of spin qubits in a silicon double quantum dot setup in the (1,1) charge configuration relies on having a large difference between the Zeeman splittings of the electrons. When the difference is not sufficiently large, the rotating wave approximation becomes inaccurate. We consider a device working in this regime, with always-on exchange coupling, and describe how a CZ gate and arbitrary one-qubit gates which are robust against charge noise can be implemented by smoothly pulsing the microwave source, while eliminating the crosstalk. We find that the most significant deviations from the rotating wave approximation, which are analogous to the Bloch-Siegert shift in a two-level system, can be compensated using local virtual gates.
We theoretically analyze the errors in one- and two-qubit gates in SiMOS and Si/SiGe spin qubit experiments, and present a pulse sequence which can suppress the errors in exchange coupling due to charge noise using ideal local rotations. In practice,
The presence of valley states is a significant obstacle to realizing quantum information technologies in Silicon quantum dots, as leakage into alternate valley states can introduce errors into the computation. We use a perturbative analytical approac
A spin qubit in semiconductor quantum dots holds promise for quantum information processing for scalability and long coherence time. An important semiconductor qubit system is a double quantum dot trapping two electrons or holes, whose spin states en
Quantum computation requires high-fidelity single-qubit and two-qubit gates on a scalable platform. Silicon spin qubits are a promising platform toward realization of this goal. In this paper we show how to perform single-qubit and CZ gates in a line
We propose a scheme for a two-qubit conditional phase gate by quantum Zeno effect with semiconductor quantum dots. The system consists of two charged dots and one ancillary dot that can perform Rabi oscillations under a resonant laser pulse. The quan