ﻻ يوجد ملخص باللغة العربية
The magnetic proximity effect in top and bottom Pt layers induced by Co in Ta/Pt/Co/Pt multilayers has been studied by interface sensitive, element specific x-ray resonant magnetic reflectivity. The asymmetry ratio for circularly polarized x-rays of left and right helicity has been measured at the Pt $L_3$ absorption edge (11567 eV) with an in-plane magnetic field ($pm158$ mT) to verify its magnetic origin. The proximity-induced magnetic moment in the bottom Pt layer decreases with the thickness of the Ta buffer layer. Grazing incidence x-ray diffraction has been carried out to show that the Ta buffer layer induces the growth of Pt(011) rather than Pt(111) which in turn reduces the induced moment. A detailed density functional theory study shows that an adjacent Co layer induces more magnetic moment in Pt(111) than in Pt(011). The manipulation of the magnetism in Pt by the insertion of a Ta buffer layer provides a new way of controlling the magnetic proximity effect which is of huge importance in spin-transport experiments across similar kind of interfaces.
We have quantitatively studied the spin-orbit torque purely generated by the spin Hall effect in a wide range of temperatures by intensionally eliminating the Rashba spin-orbit torque using Pt/Co/Pt trilayers with asymmetric thicknesses of the top an
We observe the magnetic proximity effect (MPE) in Pt/CoFe2O4 bilayers grown by molecular beam epitaxy. This is revealed through angle-dependent magnetoresistance measurements at 5 K, which isolate the contributions of induced ferromagnetism (i.e. ani
We experimentally investigate the current-induced magnetization reversal in Pt/[Co/Ni]$_3$/Al multilayers combining the anomalous Hall effect and magneto-optical Kerr effect techniques in crossbar geometry. The magnetization reversal occurs through n
Ultra-thin Pt films grown on insulating ferrimagnetic CoFe2O4 (111) epitaxial films display a magnetoresistance upon rotating the magnetization of the magnetic layer. We report here X-ray magnetic circular dichroism (XMCD) recorded at Pt-L2,3 and Pt-
We report the nonlocal spin Seebeck effect (nlSSE) in a lateral configuration of Pt/Y$_3$Fe$_5$O$_{12}$(YIG)/Pt systems as a function of the magnetic field $B$ (up to 10 T) at various temperatures $T$ (3 K < $T$ < 300 K). The nlSSE voltage decreases