ﻻ يوجد ملخص باللغة العربية
Ultra-thin Pt films grown on insulating ferrimagnetic CoFe2O4 (111) epitaxial films display a magnetoresistance upon rotating the magnetization of the magnetic layer. We report here X-ray magnetic circular dichroism (XMCD) recorded at Pt-L2,3 and Pt-M3 edges. The results indicate that the Pt magnetic moment, if any, is below the detection limit (< 0.001 {mu}$_B$/Pt), thus strongly favoring the view that the presence of CoFe2O4 does not induce the formation of magnetic moments in Pt. Therefore, the observed magnetoresistance cannot be attributed to some sort of proximity-induced magnetic moments at Pt ions and subsequent magnetic-field dependent scattering. It thus follows that either bulk (spin Hall and Inverse spin Hall Effects) or interface (Rashba) spin-orbit related effects dominate the observed magnetoresistance. Furthermore, comparison of bulk magnetization and XMCD data at (Fe,Co)-L2,3 edges suggests the presence of some spin disorder in the CoFe2O4 layer which may be relevant for the observed anomalous non-saturating field-dependence of spin Hall magnetoresistance.
We observe the magnetic proximity effect (MPE) in Pt/CoFe2O4 bilayers grown by molecular beam epitaxy. This is revealed through angle-dependent magnetoresistance measurements at 5 K, which isolate the contributions of induced ferromagnetism (i.e. ani
We report magnetoresistance measurements on thin Pt bars grown on epitaxial (001) and (111) CoFe2O4 (CFO) ferrimagnetic insulating films. The results can be described in terms of the recently discovered spin Hall magnetoresistance (SMR). The magnitud
We experimentally demonstrate the existence of magnetic coupling between two ferromagnets separated by a thin Pt layer. The coupling remains ferromagnetic regardless of the Pt thickness, and exhibits a significant dependence on temperature. Therefore
The magnetic proximity effect in top and bottom Pt layers induced by Co in Ta/Pt/Co/Pt multilayers has been studied by interface sensitive, element specific x-ray resonant magnetic reflectivity. The asymmetry ratio for circularly polarized x-rays of
We report a systematic first-principles investigation of the influence of different magnetic insulators on the magnetic proximity effect induced in graphene. Four different magnetic insulators are considered: two ferromagnetic europium chalcogenides