ترغب بنشر مسار تعليمي؟ اضغط هنا

The ground state magnetic phase diagram of the ferromagnetic Kondo-lattice model

384   0   0.0 ( 0 )
 نشر من قبل Soeren Henning
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The magnetic ground state phase diagram of the ferromagnetic Kondo-lattice model is constructed by calculating internal energies of all possible bipartite magnetic configurations of the simple cubic lattice explicitly. This is done in one dimension (1D), 2D and 3D for a local moment of S = 3/2. By assuming saturation in the local moment system we are able to treat all appearing higher local correlation functions within an equation of motion approach exactly. A simple explanation for the obtained phase diagram in terms of bandwidth reduction is given. Regions of phase separation are determined from the internal energy curves by an explicit Maxwell construction.



قيم البحث

اقرأ أيضاً

202 - M. Stier , S. Henning , W. Nolting 2011
We investigate the existence of several (anti-)ferromagnetic phases in the diluted ferromagnetic Kondo-lattice model, i.e. ferromagnetic coupling of local moment and electron spin. To do this we use a coherent potential approximation (CPA) with a dyn amical alloy analogy. For the CPA we need effective potentials, which we get first from a mean-field approximation. To improve this treatment we use in the next step a more appropriate moment conserving decoupling approach and compare both methods. The different magnetic phases are modelled by defining two magnetic sublattices. As a result we present zero-temperature phase diagrams according to the important model parameters and different dilutions.
We report the temperature-pressure-magnetic field phase diagram made from electrical resistivity measurements for the ferromagnetic (FM) Kondo lattice CeRuPO. The ground state at zero field changes from the FM state to another state, which is suggest ed to be an antiferromagnetic (AFM) state, above ~0.7 GPa, and the magnetically ordered state is completely suppressed at ~2.8 GPa. In addition to the collapse of the AFM state under pressure and a magnetic field, a metamagnetic (MM) transition from a paramagnetic state to a polarized paramagnetic state appears. CeRuPO will give us a rich playground for understanding the mechanism of the MM transition under comparable FM and AFM correlations in the Kondo lattice.
117 - Qiang Luo , Shijie Hu , Bin Xi 2017
Motivated by the recent experiment on a rare-earth material YbMgGaO$_4$ [Y. Li textit{et al.}, Phys. Rev. Lett. textbf{115}, 167203 (2015)], which found that the ground state of YbMgGaO$_4$ is a quantum spin liquid, we study the ground-state phase di agram of an anisotropic spin-$1/2$ model that was proposed to describe YbMgGaO$_4$. Using the density-matrix renormalization group method in combination with the exact diagonalization, we calculate a variety of physical quantities, including the ground-state energy, the fidelity, the entanglement entropy and spin-spin correlation functions. Our studies show that in the quantum phase diagram there is a $120^{circ}$ phase and two distinct stripe phases. The transitions from the two stripe phases to the $120^{circ}$ phase are of the first order. However, the transition between the two stripe phases is not the first order, which is different from its classical counterpart. Additionally, we find no evidence for a quantum spin liquid in this model. Our results suggest that additional terms may be also important to model the material YbMgGaO$_4$. These findings will stimulate further experimental and theoretical works in understanding the quantum spin liquid ground state in YbMgGaO$_4$.
The interplay between the Kondo effect and magnetic ordering driven by the Ruderman-Kittel-Kasuya-Yosida interaction is studied within the two-dimensional Hubbard-Kondo lattice model. In addition to the antiferromagnetic exchange interaction, $J_perp $, between the localized and the conduction electrons, this model also contains the local repulsion, $U$, between the conduction electrons. We use variational cluster approximation to investigate the competition between the antiferromagnetic phase, the Kondo singlet phase, and a ferrimagnetic phase on square lattice. At half-filling, the Neel antiferromagnetic phase dominates from small to moderate $J_perp$ and $UJ_perp$, and the Kondo singlet elsewhere. Sufficiently away from half-filling, the antiferromagnetic phase first gives way to a ferrimagnetic phase (in which the localized spins order ferromagnetically, and the conduction electrons do likewise, but the two mutually align antiferromagnetically), and then to the Kondo singlet phase.
Two-dimensional density-matrix renormalization group method is employed to examine the ground state phase diagram of the Hubbard model on the triangular lattice at half filling. The calculation reveals two discontinuities in the double occupancy with increasing the repulsive Hubbard interaction U at Uc1 = 7.55 t and Uc2 = 9.65 t (t being the hopping integral), indicating that there are three phases separated by first order transitions. The absence of any singularity in physical quantities for 0 < U < Uc1 implies that this phase corresponds to a metallic phase. The local spin density induced by an applied pinning magnetic field for U > Uc2 exhibits a three sublattice feature, which is compatible with the Neel ordered state realized in the strong coupling limit. For Uc1 < U < Uc2, a response to the applied pinning magnetic field is comparable to that in the metallic phase but a relatively large spin correlation length is found with neither valence bond nor chiral magnetic order, suggesting a paramagnetic nature which resembles gapless spin liquid. The calculation also finds that the pair- ing correlation function monotonically decreases with increasing U and thus the superconductivity is unlikely in the intermediate phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا