ترغب بنشر مسار تعليمي؟ اضغط هنا

Parton Distribution Functions of Heavy Mesons on the Light Front

82   0   0.0 ( 0 )
 نشر من قبل Jiangshan Lan
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The parton distribution functions (PDFs) of heavy mesons are evaluated from their light-front wave functions, which are obtained from a basis light-front quantization in the leading Fock sector representation. We consider the mass eigenstates from an effective Hamiltonian consisting of the confining potential adopted from light-front holography in the transverse direction, a longitudinal confinement, and a one-gluon exchange interaction with running coupling. We present the gluon and the sea quark PDFs which we generate dynamically from the QCD evolution of the valence quark distributions.

قيم البحث

اقرأ أيضاً

The ladder kernel of the Bethe-Salpeter equation is amended by introducing a different flavor dependence of the dressing functions in the heavy-quark sector. Compared with earlier work this allows for the simultaneous calculation of the mass spectrum and leptonic decay constants of light pseudoscalar mesons, the $D_u$, $D_s$, $B_u$, $B_s$ and $B_c$ mesons and the heavy quarkonia $eta_c$ and $eta_b$ within the same framework at a physical pion mass. The corresponding Bethe-Salpeter amplitudes are projected onto the light front and we reconstruct the distribution amplitudes of the mesons in the full theory. A comparison with the first inverse moment of the heavy meson distribution amplitude in heavy quark effective theory is made.
The light-front wave functions of hadrons allow us to calculate a wide range of physical observables; however, the wave functions themselves cannot be measured. We discuss recent results for quarkonia obtained in basis light-front quantization using an effective Hamiltonian with a confining model in both the transverse and longitudinal directions and with explicit one-gluon exchange. In particular, we focus on the numerical convergence of the basis expansion, as well as the asymptotic behavior of the light-front wave functions. We also illustrate that, for mesons with unequal quark masses, the maxima of the light-front wave functions depend in a non-trivial way on the valence quark-mass difference.
We study the light-unflavored mesons as relativistic bound states in the nonperturbative Hamiltonian formalism of the basis light-front quantization (BLFQ) approach. The dynamics for the valence quarks of these mesons is specified by an effective Ham iltonian containing the one-gluon exchange interaction and the confining potentials both introduced in our previous work on heavy quarkonia, supplemented additionally by a pseudoscalar contact interaction. We diagonalize this Hamiltonian in our basis function representation to obtain the mass spectrum and the light-front wave functions (LFWFs). Based on these LFWFs, we then study the structure of these mesons by computing the electromagnetic form factors, the decay constants, the parton distribution amplitudes (PDAs), and the parton distribution functions (PDFs). Our results are comparable to those from experiments and other theoretical models.
We compute the distribution amplitudes of the pion and kaon in the light-front constituent quark model with the symmetric quark-bound state vertex function. In the calculation we explicitly include the flavor-SU(3) symmetry breaking effect in terms o f the constituent quark masses of the up (down) and strange quarks. To calculate the kaon parton distribution functions~(PDFs), we use both the conditions in the light-cone wave function, i.e., when $bar{s}$ quark is on-shell, and when $u$ quark is on-shell, and make a comparison between them. The kaon PDFs calculated in the two different conditions clearly show asymmetric behaviour due to the flavor SU(3)-symmetry breaking implemented by the quark masses.
We apply the basis light-front quantization framework to solve for the structures of mesons with light and strange valence quarks. Our approach treats mesons as relativistic bound states with quarks confined in both the transverse direction and the l ight-front longitudinal direction. The spin-orbit interactions of these confined quarks are further specified by the Nambu--Jona-Lasinio model. We address the $mathrm{U}(1)_{mathrm{A}}$ axial anomaly by including the Kobayashi-Maskawa-t Hooft interaction regularized by our basis. We present the structures of the pion, the kaon, the eta meson, and the eta-prime meson in terms of their valence light-front wave functions obtained from the eigenvalue problem of our light-front Hamiltonian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا