ﻻ يوجد ملخص باللغة العربية
In this article we derive a measure of quantumness in quantum multi-parameter estimation problems. We can show that the ratio between the mean Uhlmann Curvature and the Fisher Information provides a figure of merit which estimates the amount of incompatibility arising from the quantum nature of the underlying physical system. This ratio accounts for the discrepancy between the attainable precision in the simultaneous estimation of multiple parameters and the precision predicted by the Cramer-Rao bound. As a testbed for this concept, we consider a quantum many-body system in thermal equilibrium, and explore the quantum compatibility of the model across its phase diagram.
When collective measurements on an infinite number of copies of identical quantum states can be performed, the precision limit of multi-parameter quantum estimation is quantified by the Holevo bound. In practice, however, the collective measurements
The quantum Fisher information constrains the achievable precision in parameter estimation via the quantum Cramer-Rao bound, which has attracted much attention in Hermitian systems since the 60s of the last century. However, less attention has been p
This review aims at gathering the most relevant quantum multi-parameter estimation methods that go beyond the direct use of the Quantum Fisher Information concept. We discuss in detail the Holevo Cramer-Rao bound, the Quantum Local Asymptotic Normali
Quantum metrology holds the promise of an early practical application of quantum technologies, in which measurements of physical quantities can be made with much greater precision than what is achievable with classical technologies. In this review, w
With an ever-expanding ecosystem of noisy and intermediate-scale quantum devices, exploring their possible applications is a rapidly growing field of quantum information science. In this work, we demonstrate that variational quantum algorithms feasib