ﻻ يوجد ملخص باللغة العربية
Quantum metrology holds the promise of an early practical application of quantum technologies, in which measurements of physical quantities can be made with much greater precision than what is achievable with classical technologies. In this review, we collect some of the key theoretical results in quantum parameter estimation by presenting the theory for the quantum estimation of a single parameter, multiple parameters, and optical estimation using Gaussian states. We give an overview of results in areas of current research interest, such as Bayesian quantum estimation, noisy quantum metrology, and distributed quantum sensing. We address the question how minimum measurement errors can be achieved using entanglement as well as more general quantum states. This review is presented from a geometric perspective. This has the advantage that it unifies a wide variety of estimation procedures and strategies, thus providing a more intuitive big picture of quantum parameter estimation.
In this article we derive a measure of quantumness in quantum multi-parameter estimation problems. We can show that the ratio between the mean Uhlmann Curvature and the Fisher Information provides a figure of merit which estimates the amount of incom
We study the geometric measure of quantum coherence recently proposed in [Phys. Rev. Lett. 115, 020403 (2015)]. Both lower and upper bounds of this measure are provided. These bounds are shown to be tight for a class of important coherent states -- m
We propose to use neural networks to estimate the rates of coherent and incoherent processes in quantum systems from continuous measurement records. In particular, we adapt an image recognition algorithm to recognize the patterns in experimental sign
We develop generalized bounds for quantum single-parameter estimation problems for which the coupling to the parameter is described by intrinsic multi-system interactions. For a Hamiltonian with $k$-system parameter-sensitive terms, the quantum limit
We investigate the quantum Cramer-Rao bounds on the joint multiple-parameter estimation with the Gaussian state as a probe. We derive the explicit right logarithmic derivative and symmetric logarithmic derivative operators in such a situation. We com