ترغب بنشر مسار تعليمي؟ اضغط هنا

Intersubjectivity of outcomes of quantum measurements

41   0   0.0 ( 0 )
 نشر من قبل Masanao Ozawa
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Masanao Ozawa




اسأل ChatGPT حول البحث

Every measurement determines a single value as its outcome, and yet quantum mechanics predicts it only probabilistically. The Kochen-Specker theorem and Bells inequality, enforced by the recent loophole-free experimental tests, reject a realist view that any observable has its own value at any time consistent with the statistical predictions of quantum mechanics, and favor a skeptical view that measuring an observable does not mean ascertaining the value that it has, but producing the outcome, having only a personal meaning. However, precise analysis supporting this view is unknown. Here, we show that a quantum mechanical analysis turns down this view. Suppose that two observers simultaneously measure the same observable. We ask whether they always obtain the same outcomes, or their probability distributions are the same but the outcomes are uncorrelated. Contrary to the widespread view in favor of the second, we shall show that quantum mechanics predicts that only the first case occurs. This suggests the existence of a correlation between the measurement outcome and the pre-existing value of the measured observable as a common cause for the coincidence of the outcomes. In fact, we shall show that any measurement establishes a time-like entanglement between the observable to be measured and the meter after the measurement, which causes the space-like entanglement between the meters of different observers. We also argue that our conclusion cannot be extended to measurements of so-called generalized observables, suggesting a demand for more careful analysis on the notion of observables in foundations of quantum mechanics.



قيم البحث

اقرأ أيضاً

Kelly and Leff demonstrated and discussed formal and conceptual similarities between basic thermodynamic formulas for the classical ideal gas and black body photon gas. Leff pointed out that thermodynamic formulas for the photon gas cannot be deduced completely by thermodynamic methods since these formulas hold two characteristic parameters, {it r} and {it b}, whose accurate values can be obtained exclusively by accurate methods of the quantum statistics (by explicit use of the Plancks or Bose-Einstein distribution). In this work we prove that the complete quantum thermodynamics of the black body photon gas can be done by simple, thermodynamic (non-statistical) methods. We prove that both mentioned parameters and corresponding variables (photons number and pressure) can be obtained very simply and practically exactly (with relative error about few percent), by non-statistical (without any use of the Plancks or Bose-Einstein distribution), quantum thermodynamic methods. Corner-stone of these methods represents a quantum thermodynamic stability condition that is, in some degree, very similar to quantum stability condition in the Bohr quantum atomic theory (de Broglies interpretation of the Bohr quantization postulate). Finally, we discuss conceptual similarities between black body photon gas entropy and Bekenstein-Hawking black hole entropy.
148 - Moses Fayngold 2016
A thought experiment is considered on observation of instantaneous collapse of an extended wave packet. According to relativity of simultaneity, such a collapse being instantaneous in some reference frame must be a lasting process in other frames. Bu t according to quantum mechanics, collapse is instantaneous in any frame. Mathematical structure of quantum mechanics eliminates any contradictions between these two apparently conflicting statements. Here the invariance of quantum-mechanical collapse is shown to follow directly from the Born postulate, without any use of mathematical properties of quantum operators. The consistency of quantum mechanics with Relativity is also shown for instant disentanglement of a composite system.
194 - Richard Lieu 2000
Can a simple microscopic model of space and time demonstrate Special Relativity as the macroscopic (aggregate) behavior of an ensemble ? The question will be investigated in three parts. First, it is shown that the Lorentz transformation formally ste ms from the First Relativity Postulate (FRP) {it alone} if space-time quantization is a fundamental law of physics which must be included as part of the Postulate. An important corollary, however, is that when measuring devices which carry the basic units of lengths and time (e.g. a clock ticking every time quantum) are `moving uniformly, they appear to be measuring with larger units. Secondly, such an apparent increase in the sizes of the quanta can be attributed to extra fluctuations associated with motion, which are precisely described in terms of a thermally agitated harmonic oscillator by using a temperature parameter. This provides a stringent constraint on the microscopic properties of flat space-time: it is an array of quantized oscillators. Thirdly, since the foregoing development would suggest that the space-time array of an accelerated frame cannot be in thermal equilibrium, (i.e. it will have a distribution of temperatures), the approach is applied to the case of acceleration by the field of {it any} point object, which corresponds to a temperature `spike in the array. It is shown that the outward transport of energy by phonon conduction implies an inverse-square law of force at low speeds, and the full Schwarzschild metric at high speeds. A prediction of the new theory is that when two inertial observers move too fast relative to each other, or when fields are too strong, anharmonic corrections will modify effects like time dilation, and will lead to asymmetries which implies that the FRP may not be sustainable in this extreme limit.
373 - Vladan Pankovic 2010
In the first part of this work we apply Bohr (old or naive quantum atomic) theory for analysis of the remarkable electro-dynamical problem of magnetic monopoles. We reproduce formally exactly some basic elements of the Dirac magnetic monopoles theory , especially Dirac electric/magnetic charge quantization condition. It follows after application of Bohr theory at the system, simply called magnetic monopole atom, consisting of the practically standing, massive magnetic monopole as the nucleus and electron rotating stable around magnetic monopole under magnetic and electrostatic interactions. Also, in the second part of this work we suggest a simple solution of the classical electron electromagnetic mass problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا