ﻻ يوجد ملخص باللغة العربية
Kelly and Leff demonstrated and discussed formal and conceptual similarities between basic thermodynamic formulas for the classical ideal gas and black body photon gas. Leff pointed out that thermodynamic formulas for the photon gas cannot be deduced completely by thermodynamic methods since these formulas hold two characteristic parameters, {it r} and {it b}, whose accurate values can be obtained exclusively by accurate methods of the quantum statistics (by explicit use of the Plancks or Bose-Einstein distribution). In this work we prove that the complete quantum thermodynamics of the black body photon gas can be done by simple, thermodynamic (non-statistical) methods. We prove that both mentioned parameters and corresponding variables (photons number and pressure) can be obtained very simply and practically exactly (with relative error about few percent), by non-statistical (without any use of the Plancks or Bose-Einstein distribution), quantum thermodynamic methods. Corner-stone of these methods represents a quantum thermodynamic stability condition that is, in some degree, very similar to quantum stability condition in the Bohr quantum atomic theory (de Broglies interpretation of the Bohr quantization postulate). Finally, we discuss conceptual similarities between black body photon gas entropy and Bekenstein-Hawking black hole entropy.
We study the statistics of the work done, the fluctuation relations and the irreversible entropy production in a quantum many-body system subject to the sudden quench of a control parameter. By treating the quench as a thermodynamic transformation we
In this paper we analyze the thermodynamic properties of a photon gas under the influence of a background electromagnetic field in the context of any nonlinear electrodynamics. Neglecting the self-interaction of photons, we obtain a general expressio
Thermodynamics of quantum systems out-of-equilibrium is very important for the progress of quantum technologies, however, the effects of many body interactions and their interplay with temperature, different drives and dynamical regimes is still larg
We demonstrate the effectiveness of quantum optimal control techniques in harnessing irreversibility generated by non-equilibrium processes, implemented in unitarily evolving quantum many-body systems. We address the dynamics of a finite-size quantum
Every measurement determines a single value as its outcome, and yet quantum mechanics predicts it only probabilistically. The Kochen-Specker theorem and Bells inequality, enforced by the recent loophole-free experimental tests, reject a realist view