ترغب بنشر مسار تعليمي؟ اضغط هنا

Fracturing of polycrystalline MoS$_2$ nanofilms

473   0   0.0 ( 0 )
 نشر من قبل Marianna Sledzinska
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The possibility of tailoring the critical strain of 2D materials will be crucial for the fabrication of flexible devices. In this paper, the fracture in polycrystalline MoS2 films with two different grain orientations is studied at the micro- and nanoscale using electron microscopy. The critical uniaxial strain is determined to be approximately 5% and independent of the sample morphology. However, electron beam irradiation is found to enhance the interaction between the MoS2 and the PDMS substrates, leading to an increased critical strain that can exceed 10%. This enhancement of strain resistance was used to fabricate a mechanically robust array of lines 1 mm in length. Finally, nanoscale crack propagation studied by transmission electron microscopy showed that cracks propagate along the grain boundaries as well as through the grains, preferentially along van der Waals bonding. These results provide insight regarding the fracture of polycrystalline 2D materials and a new method to tailor the critical strain and nanofabrication of ultra-thin MoS2 devices using well-developed tools, which will be of great interest to the flexible electronics industry.



قيم البحث

اقرأ أيضاً

The advancement of nanoscale electronics has been limited by energy dissipation challenges for over a decade. Such limitations could be particularly severe for two-dimensional (2D) semiconductors integrated with flexible substrates or multi-layered p rocessors, both being critical thermal bottlenecks. To shed light into fundamental aspects of this problem, here we report the first direct measurement of spatially resolved temperature in functioning 2D monolayer MoS$_2$ transistors. Using Raman thermometry we simultaneously obtain temperature maps of the device channel and its substrate. This differential measurement reveals the thermal boundary conductance (TBC) of the MoS$_2$ interface (14 $pm$ 4 MWm$^-$$^2$K$^-$$^1$) is an order magnitude larger than previously thought, yet near the low end of known solid-solid interfaces. Our study also reveals unexpected insight into non-uniformities of the MoS$_2$ transistors (small bilayer regions), which do not cause significant self-heating, suggesting that such semiconductors are less sensitive to inhomogeneity than expected. These results provide key insights into energy dissipation of 2D semiconductors and pave the way for the future design of energy-efficient 2D electronics.
In-plane optical anisotropy has been detected from monolayer MoS$_2$ grown on a-plane (11-20) sapphire substrate in the ultraviolet-visible wavelength range. Based on the measured optical anisotropy, the energy differences between the optical transit ions polarized along the ordinary and extraordinary directions of the underlying sapphire substrate have been determined. The results corroborate comprehensively with the dielectric environment induced modification on the electronic band structure and exciton binding energy of monolayer MoS$_2$ predicted recently by first principle calculations. The output of this study proposes the symmetry as a new degree of freedom for dielectric engineering of the two-dimensional materials.
Strain engineering has arisen as a powerful technique to tune the electronic and optical properties of two-dimensional semiconductors like molybdenum disulfide (MoS2). Although several theoretical works predicted that biaxial strain would be more eff ective than uniaxial strain to tune the band structure of MoS2, a direct experimental verification is still missing in the literature. Here we implemented a simple experimental setup that allows to apply biaxial strain through the bending of a cruciform polymer substrate. We used the setup to study the effect of biaxial strain on the differential reflectance spectra of 12 single-layer MoS2 flakes finding a redshift of the excitonic features at a rate between -40 meV/% and -110 meV/% of biaxial tension. We also directly compare the effect of biaxial and uniaxial strain on the same single-layer MoS2 finding that the biaxial strain gauge factor is 2.3 times larger than the uniaxial strain one.
Monolayer molybdenum disulfide (MoS$_2$) nanosheets, obtained via chemical vapor deposition onto SiO$_2$/Si substrates, are exploited to fabricate field-effect transistors with n-type conduction, high on/off ratio, steep subthreshold slope and good m obility. The transistor channel conductance increases with the reducing air pressure due to oxygen and water desorption. Local field emission measurements from the edges of the MoS$_2$ nanosheets are performed in high vacuum using a tip-shaped anode. It is demonstrated that the voltage applied to the Si substrate back-gate modulates the field emission current. Such a finding, that we attribute to gate-bias lowering of the MoS$_2$ electron affinity, enables a new field-effect transistor based on field emission.
We fabricate large-area atomically thin MoS$_2$ layers through the direct transformation of crystalline molybdenum MoS$_2$ (MoO$_3$) by sulfurization at relatively low temperatures. The obtained MoS2 sheets are polycrystalline (~10-20 nm single-cryst al domain size) with areas of up to 300x300 um$^2$ with 2-4 layers in thickness and show a marked p-type behaviour. The synthesized films are characterized by a combination of complementary techniques: Raman spectroscopy, X-ray diffraction, transmission electron microscopy and electronic transport measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا