ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiation Damage Studies on Titanium Alloys as High Intensity Proton Accelerator Beam Window Materials

74   0   0.0 ( 0 )
 نشر من قبل Taku Ishida
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A high-strength dual alpha+beta phase titanium alloy Ti-6Al-4V is utilized as a material for beam windows in several accelerator target facilities. However, relatively little is known about how material properties of this alloy are affected by high-intensity proton beam irradiation. With plans to upgrade neutrino facilities at J-PARC and Fermilab to over 1 MW beam power, the radiation damage in the window material will reach a few displacements per atom (dpa) per year, significantly above the ~0.3 dpa level of existing data. The RaDIATE collaboration has conducted a high intensity proton beam irradiation of various target and window material specimens at BLIP facility, including a variety of titanium alloys. Post-Irradiation Examination of the specimens in the 1st capsule, irradiated at up to 0.25 dpa, is in progress. Tensile tests in a hot cell at PNNL exhibited a clear signature of radiation hardening and loss of ductility for Ti-6Al-4V, while Ti-3Al-2.5V, with less beta phase, exhibited less severe hardening. Microstructural investigations will follow to study the cause of the difference in tensile behavior between these alloys. High-cycle fatigue (HCF) performance is critical to the lifetime estimation of beam windows exposed to a periodic thermal stress from a pulsed proton beam. The 1st HCF data on irradiated titanium alloys are to be obtained by a conventional bend fatigue test at Fermilab and by an ultrasonic mesoscale fatigue test at Culham Laboratory. Specimens in the 2nd capsule, irradiated at up to ~1 dpa, cover typical titanium alloy grades, including possible radiation-resistant candidates. These systematic studies on the effects of radiation damage of titanium alloys are intended to enable us to predict realistic lifetimes of current beam windows made of Ti-6Al-4V and to extend the lifetime by choosing a more radiation and thermal shock tolerant alloy.

قيم البحث

اقرأ أيضاً

A high-intensity proton beam exposure with 181 MeV energy has been conducted at Brookhaven Linac Isotope Producer facility on various material specimens for accelerator targetry applications, including titanium alloys as a beam window material. The r adiation damage level of the analyzed capsule was 0.25 dpa at beam center region with an irradiation temperature around 120 degree C. Tensile tests showed increased hardness and a large decrease in ductility for the dual alpha+beta-phase Ti-6Al-4V Grade-5 and Grade-23 extra low interstitial alloys, with the near alpha-phase Ti-3Al-2.5V Grade-9 alloy still exhibiting uniform elongation of a few % after irradiation. Transmission Electron Microscope analyses on Ti-6Al-4V indicated clear evidence of a high-density of defect clusters with size less than 2 nm in each alpha-phase grain. The beta-phase grains did not contain any visible defects such as loops or black dots, while the diffraction patterns clearly indicated omega-phase precipitation in an advanced formation stage. The radiation-induced omega-phase transformation in the beta-phase could lead to greater loss of ductility in Ti-6Al-4V alloys in comparison with Ti-3Al-2.5V alloy with less beta-phase.
In this work we study the performance of silicon photomultiplier (SiPM) light sensors after exposure to the JULIC cyclotron proton beam, of energy $sim$ 39 MeV, relative to their performance before exposure. The SiPM devices used in this study show a significant change in their behavior and downward shift of their breakdown voltage by as much as $sim$ 0.4$pm$0.1 V. Single photon measurements appear to be no longer possible for the SiPMs under study after exposure to a dose of $sim$ 0.2 Gy (corresponding to an integrated proton flux of $sim$$phi_{p}$=1.06x10$^{8}$ p/cm$^{2}$). No visible damage to the surface of the devices was caused by the exposure.
In this work, we will present a physical model and measurements of the transport of small charge packets in the bulk of thick high resistivity CCD before being collected by the pixel potential wells. A new technique to measure the lateral spread of t he charge as a function of the ionization depth in the bulk is presented. Results from measurements on CCD currently in use for several scientific instruments are shown and validated with a new mathematical algorithm to extend the current modeling based only on the diffusion of the charge in silicon.
Cerium-doped Cs$_2$LiYCl$_6$ (CLYC) and Cs$_2$LiLaBr$_x$Cl$_{6-x}$ (CLLBC) are scintillators in the elpasolite family that are attractive options for resource-constrained applications due to their ability to detect both gamma rays and neutrons within a single volume. Space-based detectors are one such application, however, the radiation environment in space can over time damage the crystal structure of the elpasolites, leading to degraded performance. We have exposed 4 samples each of CLYC and CLLBC to 800 MeV protons at the Los Alamos Neutron Science Center. The samples were irradiated with a total number of protons of 1.3$times$10$^{9}$, 1.3$times$10$^{10}$, 5.2$times$10$^{10}$, and 1.3$times$10$^{11}$, corresponding to estimated doses of 0.14, 1.46, 5.82, and 14.6 kRad, respectively on the CLYC samples and 0.14, 1.38, 5.52, and 13.8 kRad, respectively on the CLLBC samples. We report the impact these radiation doses have on the light output, activation, gamma-ray energy resolution, pulse shapes, and pulse-shape discrimination figure of merit for CLYC and CLLBC.
Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these fac ilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including $gamma$-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. The general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا