ﻻ يوجد ملخص باللغة العربية
In analyses of rare-events, regardless of the domain of application, class-imbalance issue is intrinsic. Although the challenges are known to data experts, their explicit impact on the analytic and the decisions made based on the findings are often overlooked. This is in particular prevalent in interdisciplinary research where the theoretical aspects are sometimes overshadowed by the challenges of the application. To show-case these undesirable impacts, we conduct a series of experiments on a recently created benchmark data, named Space Weather ANalytics for Solar Flares (SWAN-SF). This is a multivariate time series dataset of magnetic parameters of active regions. As a remedy for the imbalance issue, we study the impact of data manipulation (undersampling and oversampling) and model manipulation (using class weights). Furthermore, we bring to focus the auto-correlation of time series that is inherited from the use of sliding window for monitoring flares history. Temporal coherence, as we call this phenomenon, invalidates the randomness assumption, thus impacting all sampling practices including different cross-validation techniques. We illustrate how failing to notice this concept could give an artificial boost in the forecast performance and result in misleading findings. Throughout this study we utilized Support Vector Machine as a classifier, and True Skill Statistics as a verification metric for comparison of experiments. We conclude our work by specifying the correct practice in each case, and we hope that this study could benefit researchers in other domains where time series of rare events are of interest.
Important tasks like record linkage and extreme classification demonstrate extreme class imbalance, with 1 minority instance to every 1 million or more majority instances. Obtaining a sufficient sample of all classes, even just to achieve statistical
As an emerging research topic, online class imbalance learning often combines the challenges of both class imbalance and concept drift. It deals with data streams having very skewed class distributions, where concept drift may occur. It has recently
In the area of credit risk analytics, current Bankruptcy Prediction Models (BPMs) struggle with (a) the availability of comprehensive and real-world data sets and (b) the presence of extreme class imbalance in the data (i.e., very few samples for the
Dealing with imbalanced data is a prevalent problem while performing classification on the datasets. Many times, this problem contributes to bias while making decisions or implementing policies. Thus, it is vital to understand the factors which cause
Few-Shot Learning (FSL) algorithms are commonly trained through Meta-Learning (ML), which exposes models to batches of tasks sampled from a meta-dataset to mimic tasks seen during evaluation. However, the standard training procedures overlook the rea