ترغب بنشر مسار تعليمي؟ اضغط هنا

A Systematic Study of Online Class Imbalance Learning with Concept Drift

88   0   0.0 ( 0 )
 نشر من قبل Shuo Wang
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As an emerging research topic, online class imbalance learning often combines the challenges of both class imbalance and concept drift. It deals with data streams having very skewed class distributions, where concept drift may occur. It has recently received increased research attention; however, very little work addresses the combined problem where both class imbalance and concept drift coexist. As the first systematic study of handling concept drift in class-imbalanced data streams, this paper first provides a comprehensive review of current research progress in this field, including current research focuses and open challenges. Then, an in-depth experimental study is performed, with the goal of understanding how to best overcome concept drift in online learning with class imbalance. Based on the analysis, a general guideline is proposed for the development of an effective algorithm.

قيم البحث

اقرأ أيضاً

With the wide application of machine learning algorithms to the real world, class imbalance and concept drift have become crucial learning issues. Class imbalance happens when the data categories are not equally represented, i.e., at least one catego ry is minority compared to other categories. It can cause learning bias towards the majority class and poor generalization. Concept drift is a change in the underlying distribution of the problem, and is a significant issue specially when learning from data streams. It requires learners to be adaptive to dynamic changes. Class imbalance and concept drift can significantly hinder predictive performance, and the problem becomes particularly challenging when they occur simultaneously. This challenge arises from the fact that one problem can affect the treatment of the other. For example, drift detection algorithms based on the traditional classification error may be sensitive to the imbalanced degree and become less effective; and class imbalance techniques need to be adaptive to changing imbalance rates, otherwise the class receiving the preferential treatment may not be the correct minority class at the current moment. Therefore, the mutual effect of class imbalance and concept drift should be considered during algorithm design. The aim of this workshop is to bring together researchers from the areas of class imbalance learning and concept drift in order to encourage discussions and new collaborations on solving the combined issue of class imbalance and concept drift. It provides a forum for international researchers and practitioners to share and discuss their original work on addressing new challenges and research issues in class imbalance learning, concept drift, and the combined issues of class imbalance and concept drift. The proceedings include 8 papers on these topics.
163 - C. Xiao , S. Wang 2021
Federated learning is a distributed machine learning paradigm that trains a global model for prediction based on a number of local models at clients while local data privacy is preserved. Class imbalance is believed to be one of the factors that degr ades the global model performance. However, there has been very little research on if and how class imbalance can affect the global performance. class imbalance in federated learning is much more complex than that in traditional non-distributed machine learning, due to different class imbalance situations at local clients. Class imbalance needs to be re-defined in distributed learning environments. In this paper, first, we propose two new metrics to define class imbalance -- the global class imbalance degree (MID) and the local difference of class imbalance among clients (WCS). Then, we conduct extensive experiments to analyze the impact of class imbalance on the global performance in various scenarios based on our definition. Our results show that a higher MID and a larger WCS degrade more the performance of the global model. Besides, WCS is shown to slow down the convergence of the global model by misdirecting the optimization.
Few-Shot Learning (FSL) algorithms are commonly trained through Meta-Learning (ML), which exposes models to batches of tasks sampled from a meta-dataset to mimic tasks seen during evaluation. However, the standard training procedures overlook the rea l-world dynamics where classes commonly occur at different frequencies. While it is generally understood that class imbalance harms the performance of supervised methods, limited research examines the impact of imbalance on the FSL evaluation task. Our analysis compares 10 state-of-the-art meta-learning and FSL methods on different imbalance distributions and rebalancing techniques. Our results reveal that 1) some FSL methods display a natural disposition against imbalance while most other approaches produce a performance drop by up to 17% compared to the balanced task without the appropriate mitigation; 2) contrary to popular belief, many meta-learning algorithms will not automatically learn to balance from exposure to imbalanced training tasks; 3) classical rebalancing strategies, such as random oversampling, can still be very effective, leading to state-of-the-art performances and should not be overlooked; 4) FSL methods are more robust against meta-dataset imbalance than imbalance at the task-level with a similar imbalance ratio ($rho<20$), with the effect holding even in long-tail datasets under a larger imbalance ($rho=65$).
Federated learning (FL) involves multiple distributed devices jointly training a shared model without any of the participants having to reveal their local data to a centralized server. Most of previous FL approaches assume that data on devices are fi xed and stationary during the training process. However, this assumption is unrealistic because these devices usually have varying sampling rates and different system configurations. In addition, the underlying distribution of the device data can change dynamically over time, which is known as concept drift. Concept drift makes the learning process complicated because of the inconsistency between existing and upcoming data. Traditional concept drift handling techniques such as chunk based and ensemble learning-based methods are not suitable in the federated learning frameworks due to the heterogeneity of local devices. We propose a novel approach, FedConD, to detect and deal with the concept drift on local devices and minimize the effect on the performance of models in asynchronous FL. The drift detection strategy is based on an adaptive mechanism which uses the historical performance of the local models. The drift adaptation is realized by adjusting the regularization parameter of objective function on each local device. Additionally, we design a communication strategy on the server side to select local updates in a prudent fashion and speed up model convergence. Experimental evaluations on three evolving data streams and two image datasets show that model~detects and handles concept drift, and also reduces the overall communication cost compared to other baseline methods.
235 - Lixu Wang , Shichao Xu , Xiao Wang 2020
Federated learning (FL) is a promising approach for training decentralized data located on local client devices while improving efficiency and privacy. However, the distribution and quantity of the training data on the clients side may lead to signif icant challenges such as class imbalance and non-IID (non-independent and identically distributed) data, which could greatly impact the performance of the common model. While much effort has been devoted to helping FL models converge when encountering non-IID data, the imbalance issue has not been sufficiently addressed. In particular, as FL training is executed by exchanging gradients in an encrypted form, the training data is not completely observable to either clients or servers, and previous methods for class imbalance do not perform well for FL. Therefore, it is crucial to design new methods for detecting class imbalance in FL and mitigating its impact. In this work, we propose a monitoring scheme that can infer the composition of training data for each FL round, and design a new loss function -- textbf{Ratio Loss} to mitigate the impact of the imbalance. Our experiments demonstrate the importance of acknowledging class imbalance and taking measures as early as possible in FL training, and the effectiveness of our method in mitigating the impact. Our method is shown to significantly outperform previous methods, while maintaining client privacy.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا