ﻻ يوجد ملخص باللغة العربية
We study the structure of the non-perturbative free energy of a one-parameter class of little string theories (LSTs) of A-type in the so-called unrefined limit. These theories are engineered by $N$ M5-branes probing a transverse flat space. By analysing a number of examples, we observe a pattern which suggests to write the free energy in a fashion that resembles a decomposition into higher-point functions which can be presented in a graphical way reminiscent of sums of (effective) Feynman diagrams: to leading order in the instanton parameter of the LST, the $N$ external states are given either by the fundamental building blocks of the theory with $N=1$, or the function that governs the counting of BPS states of a single M5-brane coupling to one M2-brane on either side. These states are connected via an effective coupling function which encodes the details of the gauge algebra of the LST and which in its simplest (non-trivial) form is captured by the scalar Greens function on the torus. More complicated incarnations of this function show certain similarities with so-called modular graph functions, which have appeared in the study of Feynman amplitudes in string- and field theory. Finally, similar structures continue to exist at higher instanton orders, which, however, also contain contributions that can be understood as the action of (Hecke) operators on the leading instanton result.
In arXiv:1911.08172 we have studied the single-particle free energy of a class of Little String Theories of A-type, which are engineered by $N$ parallel M5-branes on a circle. To leading instanton order (from the perspective of the low energy $U(N)$
In earlier work we studied features of non-holomorphic modular functions associated with Feynman graphs for a conformal scalar field theory on a two-dimensional torus with zero external momenta at all vertices. Such functions, which we will refer to
The concept and the construction of modular graph functions are generalized from genus-one to higher genus surfaces. The integrand of the four-graviton superstring amplitude at genus-two provides a generating function for a special class of such func
We study a class of Little String Theories (LSTs) of A type, described by $N$ parallel M5-branes spread out on a circle and which in the low energy regime engineer supersymmetric gauge theories with $U(N)$ gauge group. The BPS states in this setting
The integral of an arbitrary two-loop modular graph function over the fundamental domain for $SL(2,Z)$ in the upper half plane is evaluated using recent results on the Poincare series for these functions.