The integral of an arbitrary two-loop modular graph function over the fundamental domain for $SL(2,Z)$ in the upper half plane is evaluated using recent results on the Poincare series for these functions.
The expansion of a modular graph function on a torus of modulus $tau$ near the cusp is given by a Laurent polynomial in $y= pi Im (tau)$ with coefficients that are rational multiples of single-valued multiple zeta-values, apart from the leading term
whose coefficient is rational and exponentially suppressed terms. We prove that the coefficients of the non-leading terms in the Laurent polynomial of the modular graph function $D_N(tau)$ associated with a melon graph is free of irreducible multiple zeta-values and can be written as a polynomial in odd zeta-values with rational coefficients for arbitrary $N geq 0$. The proof proceeds by expressing a generating function for $D_N(tau)$ in terms of an integral over the Virasoro-Shapiro closed-string tree amplitude.
The concept and the construction of modular graph functions are generalized from genus-one to higher genus surfaces. The integrand of the four-graviton superstring amplitude at genus-two provides a generating function for a special class of such func
tions. A general method is developed for analyzing the behavior of modular graph functions under non-separating degenerations in terms of a natural real parameter $t$. For arbitrary genus, the Arakelov Green function and the Kawazumi-Zhang invariant degenerate to a Laurent polynomial in $t$ of degree $(1,1)$ in the limit $ttoinfty$. For genus two, each coefficient of the low energy expansion of the string amplitude degenerates to a Laurent polynomial of degree $(w,w)$ in $t$, where $w+2$ is the degree of homogeneity in the kinematic invariants. These results are exact to all orders in $t$, up to exponentially suppressed corrections. The non-separating degeneration of a general class of modular graph functions at arbitrary genus is sketched and similarly results in a Laurent polynomial in $t$ of bounded degree. The coefficients in the Laurent polynomial are generalized modular graph functions for a punctured Riemann surface of lower genus.
In earlier work we studied features of non-holomorphic modular functions associated with Feynman graphs for a conformal scalar field theory on a two-dimensional torus with zero external momenta at all vertices. Such functions, which we will refer to
as modular graph functions, arise, for example, in the low energy expansion of genus-one Type II superstring amplitudes. We here introduce a class of single-valued elliptic multiple polylogarithms, which are defined as elliptic functions associated with Feynman graphs with vanishing external momenta at all but two vertices. These functions depend on a coordinate, $zeta$, on the elliptic curve and reduce to modular graph functions when $zeta$ is set equal to $1$. We demonstrate that these single-valued elliptic multiple polylogarithms are linear combinations of multiple polylogarithms, and that modular graph functions are sums of single-valued elliptic multiple polylogarithms evaluated at the identity of the elliptic curve, in both cases with rational coefficients. This insight suggests the many interrelations between modular graph functions (a few of which were established in earlier papers) may be obtained as a consequence of identities involving multiple polylogarithms, and explains an earlier observation that the coefficients of the Laurent polynomial at the cusp are given by rational numbers times single-valued multiple zeta values.
The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop
graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues for the extended family of dihedral modular graph functions are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues $s(s-1)$ for positive integers $s$ bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.
We investigate generating functions for the integrals over world-sheet tori appearing in closed-string one-loop amplitudes of bosonic, heterotic and type-II theories. These closed-string integrals are shown to obey homogeneous and linear differential
equations in the modular parameter of the torus. We spell out the first-order Cauchy-Riemann and second-order Laplace equations for the generating functions for any number of external states. The low-energy expansion of such torus integrals introduces infinite families of non-holomorphic modular forms known as modular graph forms. Our results generate homogeneous first- and second-order differential equations for arbitrary such modular graph forms and can be viewed as a step towards all-order low-energy expansions of closed-string integrals.