ترغب بنشر مسار تعليمي؟ اضغط هنا

Reliability Does Matter: An End-to-End Weakly Supervised Semantic Segmentation Approach

185   0   0.0 ( 0 )
 نشر من قبل Bingfeng Zhang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Weakly supervised semantic segmentation is a challenging task as it only takes image-level information as supervision for training but produces pixel-level predictions for testing. To address such a challenging task, most recent state-of-the-art approaches propose to adopt two-step solutions, emph{i.e. } 1) learn to generate pseudo pixel-level masks, and 2) engage FCNs to train the semantic segmentation networks with the pseudo masks. However, the two-step solutions usually employ many bells and whistles in producing high-quality pseudo masks, making this kind of methods complicated and inelegant. In this work, we harness the image-level labels to produce reliable pixel-level annotations and design a fully end-to-end network to learn to predict segmentation maps. Concretely, we firstly leverage an image classification branch to generate class activation maps for the annotated categories, which are further pruned into confident yet tiny object/background regions. Such reliable regions are then directly served as ground-truth labels for the parallel segmentation branch, where a newly designed dense energy loss function is adopted for optimization. Despite its apparent simplicity, our one-step solution achieves competitive mIoU scores (emph{val}: 62.6, emph{test}: 62.9) on Pascal VOC compared with those two-step state-of-the-arts. By extending our one-step method to two-step, we get a new state-of-the-art performance on the Pascal VOC (emph{val}: 66.3, emph{test}: 66.5).

قيم البحث

اقرأ أيضاً

We propose a novel method for semantic segmentation, the task of labeling each pixel in an image with a semantic class. Our method combines the advantages of the two main competing paradigms. Methods based on region classification offer proper spatia l support for appearance measurements, but typically operate in two separate stages, none of which targets pixel labeling performance at the end of the pipeline. More recent fully convolutional methods are capable of end-to-end training for the final pixel labeling, but resort to fixed patches as spatial support. We show how to modify modern region-based approaches to enable end-to-end training for semantic segmentation. This is achieved via a differentiable region-to-pixel layer and a differentiable free-form Region-of-Interest pooling layer. Our method improves the state-of-the-art in terms of class-average accuracy with 64.0% on SIFT Flow and 49.9% on PASCAL Context, and is particularly accurate at object boundaries.
Weakly supervised object detection (WSOD), which is the problem of learning detectors using only image-level labels, has been attracting more and more interest. However, this problem is quite challenging due to the lack of location supervision. To ad dress this issue, this paper integrates saliency into a deep architecture, in which the location in- formation is explored both explicitly and implicitly. Specifically, we select highly confident object pro- posals under the guidance of class-specific saliency maps. The location information, together with semantic and saliency information, of the selected proposals are then used to explicitly supervise the network by imposing two additional losses. Meanwhile, a saliency prediction sub-network is built in the architecture. The prediction results are used to implicitly guide the localization procedure. The entire network is trained end-to-end. Experiments on PASCAL VOC demonstrate that our approach outperforms all state-of-the-arts.
Panoptic segmentation, which needs to assign a category label to each pixel and segment each object instance simultaneously, is a challenging topic. Traditionally, the existing approaches utilize two independent models without sharing features, which makes the pipeline inefficient to implement. In addition, a heuristic method is usually employed to merge the results. However, the overlapping relationship between object instances is difficult to determine without sufficient context information during the merging process. To address the problems, we propose a novel end-to-end network for panoptic segmentation, which can efficiently and effectively predict both the instance and stuff segmentation in a single network. Moreover, we introduce a novel spatial ranking module to deal with the occlusion problem between the predicted instances. Extensive experiments have been done to validate the performance of our proposed method and promising results have been achieved on the COCO Panoptic benchmark.
Due to the need to store the intermediate activations for back-propagation, end-to-end (E2E) training of deep networks usually suffers from high GPUs memory footprint. This paper aims to address this problem by revisiting the locally supervised learn ing, where a network is split into gradient-isolated modules and trained with local supervision. We experimentally show that simply training local modules with E2E loss tends to collapse task-relevant information at early layers, and hence hurts the performance of the full model. To avoid this issue, we propose an information propagation (InfoPro) loss, which encourages local modules to preserve as much useful information as possible, while progressively discard task-irrelevant information. As InfoPro loss is difficult to compute in its original form, we derive a feasible upper bound as a surrogate optimization objective, yielding a simple but effective algorithm. In fact, we show that the proposed method boils down to minimizing the combination of a reconstruction loss and a normal cross-entropy/contrastive term. Extensive empirical results on five datasets (i.e., CIFAR, SVHN, STL-10, ImageNet and Cityscapes) validate that InfoPro is capable of achieving competitive performance with less than 40% memory footprint compared to E2E training, while allowing using training data with higher-resolution or larger batch sizes under the same GPU memory constraint. Our method also enables training local modules asynchronously for potential training acceleration. Code is available at: https://github.com/blackfeather-wang/InfoPro-Pytorch.
Pixel-wise clean annotation is necessary for fully-supervised semantic segmentation, which is laborious and expensive to obtain. In this paper, we propose a weakly supervised 2D semantic segmentation model by incorporating sparse bounding box labels with available 3D information, which is much easier to obtain with advanced sensors. We manually labeled a subset of the 2D-3D Semantics(2D-3D-S) dataset with bounding boxes, and introduce our 2D-3D inference module to generate accurate pixel-wise segment proposal masks. Guided by 3D information, we first generate a point cloud of objects and calculate objectness probability score for each point. Then we project the point cloud with objectness probabilities back to 2D images followed by a refinement step to obtain segment proposals, which are treated as pseudo labels to train a semantic segmentation network. Our method works in a recursive manner to gradually refine the above-mentioned segment proposals. Extensive experimental results on the 2D-3D-S dataset show that the proposed method can generate accurate segment proposals when bounding box labels are available on only a small subset of training images. Performance comparison with recent state-of-the-art methods further illustrates the effectiveness of our method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا