ﻻ يوجد ملخص باللغة العربية
Weakly supervised semantic segmentation is a challenging task as it only takes image-level information as supervision for training but produces pixel-level predictions for testing. To address such a challenging task, most recent state-of-the-art approaches propose to adopt two-step solutions, emph{i.e. } 1) learn to generate pseudo pixel-level masks, and 2) engage FCNs to train the semantic segmentation networks with the pseudo masks. However, the two-step solutions usually employ many bells and whistles in producing high-quality pseudo masks, making this kind of methods complicated and inelegant. In this work, we harness the image-level labels to produce reliable pixel-level annotations and design a fully end-to-end network to learn to predict segmentation maps. Concretely, we firstly leverage an image classification branch to generate class activation maps for the annotated categories, which are further pruned into confident yet tiny object/background regions. Such reliable regions are then directly served as ground-truth labels for the parallel segmentation branch, where a newly designed dense energy loss function is adopted for optimization. Despite its apparent simplicity, our one-step solution achieves competitive mIoU scores (emph{val}: 62.6, emph{test}: 62.9) on Pascal VOC compared with those two-step state-of-the-arts. By extending our one-step method to two-step, we get a new state-of-the-art performance on the Pascal VOC (emph{val}: 66.3, emph{test}: 66.5).
We propose a novel method for semantic segmentation, the task of labeling each pixel in an image with a semantic class. Our method combines the advantages of the two main competing paradigms. Methods based on region classification offer proper spatia
Weakly supervised object detection (WSOD), which is the problem of learning detectors using only image-level labels, has been attracting more and more interest. However, this problem is quite challenging due to the lack of location supervision. To ad
Panoptic segmentation, which needs to assign a category label to each pixel and segment each object instance simultaneously, is a challenging topic. Traditionally, the existing approaches utilize two independent models without sharing features, which
Due to the need to store the intermediate activations for back-propagation, end-to-end (E2E) training of deep networks usually suffers from high GPUs memory footprint. This paper aims to address this problem by revisiting the locally supervised learn
Pixel-wise clean annotation is necessary for fully-supervised semantic segmentation, which is laborious and expensive to obtain. In this paper, we propose a weakly supervised 2D semantic segmentation model by incorporating sparse bounding box labels