ترغب بنشر مسار تعليمي؟ اضغط هنا

Region-based semantic segmentation with end-to-end training

94   0   0.0 ( 0 )
 نشر من قبل Holger Caesar
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a novel method for semantic segmentation, the task of labeling each pixel in an image with a semantic class. Our method combines the advantages of the two main competing paradigms. Methods based on region classification offer proper spatial support for appearance measurements, but typically operate in two separate stages, none of which targets pixel labeling performance at the end of the pipeline. More recent fully convolutional methods are capable of end-to-end training for the final pixel labeling, but resort to fixed patches as spatial support. We show how to modify modern region-based approaches to enable end-to-end training for semantic segmentation. This is achieved via a differentiable region-to-pixel layer and a differentiable free-form Region-of-Interest pooling layer. Our method improves the state-of-the-art in terms of class-average accuracy with 64.0% on SIFT Flow and 49.9% on PASCAL Context, and is particularly accurate at object boundaries.

قيم البحث

اقرأ أيضاً

Weakly supervised semantic segmentation is a challenging task as it only takes image-level information as supervision for training but produces pixel-level predictions for testing. To address such a challenging task, most recent state-of-the-art appr oaches propose to adopt two-step solutions, emph{i.e. } 1) learn to generate pseudo pixel-level masks, and 2) engage FCNs to train the semantic segmentation networks with the pseudo masks. However, the two-step solutions usually employ many bells and whistles in producing high-quality pseudo masks, making this kind of methods complicated and inelegant. In this work, we harness the image-level labels to produce reliable pixel-level annotations and design a fully end-to-end network to learn to predict segmentation maps. Concretely, we firstly leverage an image classification branch to generate class activation maps for the annotated categories, which are further pruned into confident yet tiny object/background regions. Such reliable regions are then directly served as ground-truth labels for the parallel segmentation branch, where a newly designed dense energy loss function is adopted for optimization. Despite its apparent simplicity, our one-step solution achieves competitive mIoU scores (emph{val}: 62.6, emph{test}: 62.9) on Pascal VOC compared with those two-step state-of-the-arts. By extending our one-step method to two-step, we get a new state-of-the-art performance on the Pascal VOC (emph{val}: 66.3, emph{test}: 66.5).
125 - Jie Hu , Liujuan Cao , Yao Lu 2021
End-to-end paradigms significantly improve the accuracy of various deep-learning-based computer vision models. To this end, tasks like object detection have been upgraded by replacing non-end-to-end components, such as removing non-maximum suppressio n by training with a set loss based on bipartite matching. However, such an upgrade is not applicable to instance segmentation, due to its significantly higher output dimensions compared to object detection. In this paper, we propose an instance segmentation Transformer, termed ISTR, which is the first end-to-end framework of its kind. ISTR predicts low-dimensional mask embeddings, and matches them with ground truth mask embeddings for the set loss. Besides, ISTR concurrently conducts detection and segmentation with a recurrent refinement strategy, which provides a new way to achieve instance segmentation compared to the existing top-down and bottom-up frameworks. Benefiting from the proposed end-to-end mechanism, ISTR demonstrates state-of-the-art performance even with approximation-based suboptimal embeddings. Specifically, ISTR obtains a 46.8/38.6 box/mask AP using ResNet50-FPN, and a 48.1/39.9 box/mask AP using ResNet101-FPN, on the MS COCO dataset. Quantitative and qualitative results reveal the promising potential of ISTR as a solid baseline for instance-level recognition. Code has been made available at: https://github.com/hujiecpp/ISTR.
We present MaX-DeepLab, the first end-to-end model for panoptic segmentation. Our approach simplifies the current pipeline that depends heavily on surrogate sub-tasks and hand-designed components, such as box detection, non-maximum suppression, thing -stuff merging, etc. Although these sub-tasks are tackled by area experts, they fail to comprehensively solve the target task. By contrast, our MaX-DeepLab directly predicts class-labeled masks with a mask transformer, and is trained with a panoptic quality inspired loss via bipartite matching. Our mask transformer employs a dual-path architecture that introduces a global memory path in addition to a CNN path, allowing direct communication with any CNN layers. As a result, MaX-DeepLab shows a significant 7.1% PQ gain in the box-free regime on the challenging COCO dataset, closing the gap between box-based and box-free methods for the first time. A small variant of MaX-DeepLab improves 3.0% PQ over DETR with similar parameters and M-Adds. Furthermore, MaX-DeepLab, without test time augmentation, achieves new state-of-the-art 51.3% PQ on COCO test-dev set. Code is available at https://github.com/google-research/deeplab2.
82 - Kai Yao , Kaizhu Huang , Jie Sun 2021
We consider unsupervised cell nuclei segmentation in this paper. Exploiting the recently-proposed unpaired image-to-image translation between cell nuclei images and randomly synthetic masks, existing approaches, e.g., CycleGAN, have achieved encourag ing results. However, these methods usually take a two-stage pipeline and fail to learn end-to-end in cell nuclei images. More seriously, they could lead to the lossy transformation problem, i.e., the content inconsistency between the original images and the corresponding segmentation output. To address these limitations, we propose a novel end-to-end unsupervised framework called Aligned Disentangling Generative Adversarial Network (AD-GAN). Distinctively, AD-GAN introduces representation disentanglement to separate content representation (the underling spatial structure) from style representation (the rendering of the structure). With this framework, spatial structure can be preserved explicitly, enabling a significant reduction of macro-level lossy transformation. We also propose a novel training algorithm able to align the disentangled content in the latent space to reduce micro-level lossy transformation. Evaluations on real-world 2D and 3D datasets show that AD-GAN substantially outperforms the other comparison methods and the professional software both quantitatively and qualitatively. Specifically, the proposed AD-GAN leads to significant improvement over the current best unsupervised methods by an average 17.8% relatively (w.r.t. the metric DICE) on four cell nuclei datasets. As an unsupervised method, AD-GAN even performs competitive with the best supervised models, taking a further leap towards end-to-end unsupervised nuclei segmentation.
Panoptic segmentation, which needs to assign a category label to each pixel and segment each object instance simultaneously, is a challenging topic. Traditionally, the existing approaches utilize two independent models without sharing features, which makes the pipeline inefficient to implement. In addition, a heuristic method is usually employed to merge the results. However, the overlapping relationship between object instances is difficult to determine without sufficient context information during the merging process. To address the problems, we propose a novel end-to-end network for panoptic segmentation, which can efficiently and effectively predict both the instance and stuff segmentation in a single network. Moreover, we introduce a novel spatial ranking module to deal with the occlusion problem between the predicted instances. Extensive experiments have been done to validate the performance of our proposed method and promising results have been achieved on the COCO Panoptic benchmark.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا