ﻻ يوجد ملخص باللغة العربية
Synchrotron Laue microdiffraction and Digital Image Correlation measurements were coupled to track the elastic strain field (or stress field) and the total strain field near a general grain boundary in a bent bicrystal. A 316L stainless steel bicrystal was deformed in situ into the elasto-plastic regime with a four-point bending setup. The test was then simulated using finite elements with a crystal plasticity model comprising internal variables (dislocation densities on discrete slip systems). The predictions of the model have been compared with both the total strain field and the elastic strain field obtained experimentally. While activated slip systems and total strains are reasonably well predicted, elastic strains appear overestimated next to the grain boundary. This suggests that conventional crystal plasticity models need improvement to correctly model stresses at grain boundaries.
Flexoelectricity is a type of ubiquitous and prominent electromechanical coupling, pertaining to the response of electrical polarization to mechanical strain gradients while not restricted to the symmetry of materials. However, large elastic deformat
Nano-crystallize materials have been known for decades to potentially owe the novel self-healing ability for radiation damage, which has been demonstrated to be especially linked to preferential occupation of interstitials at grain boundary (GB) and
We address a three-dimensional, coarse-grained description of dislocation networks at grain boundaries between rotated crystals. The so-called amplitude expansion of the phase-field crystal model is exploited with the aid of finite element method cal
Multi-crystalline silicon is widely used for producing low-cost and high-efficiency solar cells. During crystal growth and device fabrication, silicon solar cells contain grain boundaries (GBs) which are preferential segregation sites for atomic impu
We have studied the temperature dependence of low-field magnetoresistance and current-voltage characteristics of a low-angle bi-crystal grain boundary junction in perovskite manganite La_{2/3}Sr_{1/3}MnO_3 thin film. By gradually trimming the junctio