ترغب بنشر مسار تعليمي؟ اضغط هنا

A model for spin-polarized transport in perovskite manganite bi-crystal grain boundaries

99   0   0.0 ( 0 )
 نشر من قبل Robert Gunnarsson
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the temperature dependence of low-field magnetoresistance and current-voltage characteristics of a low-angle bi-crystal grain boundary junction in perovskite manganite La_{2/3}Sr_{1/3}MnO_3 thin film. By gradually trimming the junction we have been able to reveal the non-linear behavior of the latter. With the use of the relation M_{GB} propto M_{bulk}sqrt{MR^*} we have extracted the grain boundary magnetization. Further, we demonstrate that the built-in potential barrier of the grain boundary can be modelled by V_{bi}propto M_{bulk}^2 - M_{GB}^2. Thus our model connects the magnetoresistance with the potential barrier at the grain boundary region. The results indicate that the band-bending at the grain boundary interface has a magnetic origin.


قيم البحث

اقرأ أيضاً

Interface-dominated materials such as nanocrystalline thin films have emerged as an enthralling class of materials able to engineer functional properties of transition metal oxides widely used in energy and information technologies. In particular, it has been proved that strain-induced defects in grain boundaries of manganites deeply impact their functional properties by boosting their oxygen mass transport while abating their electronic and magnetic order. In this work, the origin of these dramatic changes is correlated for the first time with strong modifications of the anionic and cationic composition in the vicinity of strained grain boundary regions. We are also able to alter the grain boundary composition by tuning the overall cationic content in the films, which represents a new and powerful tool, beyond the classical space charge layer effect, for engineering electronic and mass transport properties of metal oxide thin films useful for a collection of relevant solid state devices.
Metal nano-aerogels combine a large surface area, a high structural stability, and a high catalytic activity towards a variety of chemical reactions. The performance of such nanostructures is underpinned by the atomic-level distribution of their cons tituents. Yet monitoring their sub-nanoscale structure and composition to guide property optimization remains extremely challenging. Here, we synthesized Pd nano-aerogels from a K2PdCl4 precursor and two different NaBH4 reductant concentrations in distilled water. Atom probe tomography reveals that the aerogel is poly-crystalline and that impurities (Na, K) are integrated from the solution into grain boundaries. Ab initio calculations indicate that these impurities preferentially bound to the Pd-metal surface and are ultimately found in grain boundaries forming as the particles coalesce during synthesis, with Na atoms thermodynamically equilibrating with the surrounding solution and K atoms remaining between growing grains. If controlled, impurity integration, i.e. grain boundary decoration, may offer opportunities for designing new nano-aerogels.
The strong spin-spin exchange interaction in some low-dimensional magnetic materials can give rise to a high group velocity and thermal conductivity contribution from magnons. One example is the incommensurate layered compounds (Sr,Ca,La)14Cu24O41. T he effects of grain boundaries and defects on quasi-one-dimensional magnon transport in these compounds are not well understood. Here we report the microstructures and anisotropic thermal transport properties of textured Sr14Cu24O41, which are prepared by solid-state reaction followed by spark plasma sintering. Transmission electron microscopy clearly reveals nano-layered grains and the presence of dislocations and planar defects. The thermal conductivity contribution and mean free paths of magnons in the textured samples are evaluated with the use of a kinetic model for one-dimensional magnon transport, and found to be suppressed significantly as compared to single crystals at low temperatures. The experimental results can be explained by a one-dimensional magnon-defect scattering model, provided that the magnon-grain boundary scattering mean free path in the anisotropic magnetic structure is smaller than the average length of these nano-layers along the c axis. The finding suggests low transmission coefficients for magnons across grain boundaries.
We address a three-dimensional, coarse-grained description of dislocation networks at grain boundaries between rotated crystals. The so-called amplitude expansion of the phase-field crystal model is exploited with the aid of finite element method cal culations. This approach allows for the description of microscopic features, such as dislocations, while simultaneously being able to describe length scales that are orders of magnitude larger than the lattice spacing. Moreover, it allows for the direct description of extended defects by means of a scalar order parameter. The versatility of this framework is shown by considering both fcc and bcc lattice symmetries and different rotation axes. First, the specific case of planar, twist grain boundaries is illustrated. The details of the method are reported and the consistency of the results with literature is discussed. Then, the dislocation networks forming at the interface between a spherical, rotated crystal embedded in an unrotated crystalline structure, are shown. Although explicitly accounting for dislocations which lead to an anisotropic shrinkage of the rotated grain, the extension of the spherical grain boundary is found to decrease linearly over time in agreement with the classical theory of grain growth and recent atomistic investigations. It is shown that the results obtained for a system with bcc symmetry agree very well with existing results, validating the methodology. Furthermore, fully original results are shown for fcc lattice symmetry, revealing the generality of the reported observations.
Structural transformations at interfaces are of profound fundamental interest as complex examples of phase transitions in low-dimensional systems. Despite decades of extensive research, no compelling evidence exists for structural transformations in high-angle grain boundaries in elemental systems. Here we show that the critical impediment to observations of such phase transformations in atomistic modeling has been rooted in inadequate simulation methodology. The proposed new methodology allows variations in atomic density inside the grain boundary and reveals multiple grain boundary phases with different atomic structures. Reversible first-order transformations between such phases are observed by varying temperature or injecting point defects into the boundary region. Due to the presence of multiple metastable phases, grain boundaries can absorb significant amounts of point defects created inside the material by processes such as irradiation. We propose a novel mechanism of radiation damage healing in metals which may guide further improvements in radiation resistance of metallic materials through grain boundary engineering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا