ترغب بنشر مسار تعليمي؟ اضغط هنا

Calibrating the power of relativistic jets

93   0   0.0 ( 0 )
 نشر من قبل Luigi Foschini
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There are several methods to calculate the radiative and kinetic power of relativistic jets, but their results can differ by one or two orders of magnitude. Therefore, it is necessary to perform a calibration of the jet power, to understand the reasons for these differences (whether wrong hypotheses or intrinsic source variability), and if it is possible to converge to a reliable measurement of this physical quantity. We present preliminary results of a project aimed at calibrating the power of relativistic jets in active galactic nuclei (AGN) and X-ray binaries (XRB). We started by selecting all the AGN associations with known redshift in the Fourth Fermi LAT Gamma-Ray Catalog (4FGL). We then calculated the radiative and/or kinetic powers from available data or we extracted this information from literature. We compare the values obtained for overlapping samples and highlight early conclusions.



قيم البحث

اقرأ أيضاً

In this paper, we investigate the acceleration in relativistic jets of high-energy proton preaccelerated in the magnetosphere of a supermassive black hole. The proton reaches maximum energy when passing the total potential difference of $U$ between t he jet axis and its periphery. This voltage is created by a rotating black hole and transmitted along magnetic field lines into the jet. It is shown that the trajectories of proton in the jet are divided into three groups: untrapped, trapped and not accelerated. Untrapped particles are not kept by poloidal and toroidal magnetic fields inside the jet, so they escape out the jet and their energy is equal to the maximum value, $eU$. Trapped protons are moving along the jet with oscillations in the radial direction. Their energy varies around the value of $0.74 eU$. In a strong magnetic field protons preaccelerated in the magnetosphere are pressed to the jet axis and practically are not accelerated in the jet. The work defines acceleration regimes for a range of the most well-known AGN objects with relativistic jets and for the microquasar SS433.
111 - G. Ghisellini 2014
Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central black hole, as well as the magnetic field near the event horizon. The physical mechanism mechan ism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous used samples prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power as measured through the gamma-ray luminosity, and accretion luminosity as measured by the broad emission lines, with the jet power dominating over the disk luminosity, in agreement with numerical simulations. This implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter.
High-resolution Very-Long-Baseline Interferometry observations of NGC 1052 show a two sided jet with several regions of enhanced emission and a clear emission gap between the two jets.This gap shrinks with increasing frequency and vanishes around $ u sim43$ GHz. The observed structures are due to both the macroscopic fluid dynamics interacting with the surrounding ambient medium including an obscuring torus and the radiation microphysics. In this paper we investigate the possible physical conditions in relativistic jets of NGC 1052 by directly modelling the observed emission and spectra via state-of-the-art special-relativistic hydrodynamic (SRHD) simulations and radiative transfer calculations. To investigate the physical conditions in the relativistic jet we coupled our radiative transfer code to evolutionary algorithms and performed simultaneous modelling of the observed jet structure and the broadband radio spectrum. During the calculation of the radiation we consider both thermal and non-thermal emission. In order to compare our model to VLBI observations we take into account the sparse sampling of the u-v plane, the array properties and the imaging algorithm. We present for the first time an end-to-end pipeline for fitting numerical simulations to VLBI observations of relativistic jets taking into account the macrophysics including fluid dynamics and ambient medium configurations together with thermal/non-thermal emission and the properties of the observing array. The detailed analysis of our simulations shows that the structure and properties of the observed relativistic jets in NGC 1052 can be reconstructed by a slightly over-pressured jet ($d_ksim1.5$) embedded in a decreasing pressure ambient medium
High-resolution very long baseline interferometry (VLBI) radio observations have resolved the detailed emission structures of active galactic nucleus jets. General relativistic magnetohydrodynamic (GRMHD) simulations have improved the understanding o f jet production physics, although theoretical studies still have difficulties in constraining the origin and distribution of jetted matter. We construct a new steady, axisymmetric GRMHD jet model to obtain approximate solutions of black hole (BH) magnetospheres, and examine the matter density distribution of jets. By assuming fixed poloidal magnetic field shapes that mimic force-free analytic solutions and GRMHD simulation results and assuming constant poloidal velocity at the separation surface, which divides the inflow and outflow, we numerically solve the force-balance between the field lines at the separation surface and analytically solve the distributions of matter velocity and density along the field lines. We find that the densities at the separation surface in our parabolic field models roughly follow $propto r_{ss}^{-2}$ in the far zone from the BH, where $r_{ss}$ is the radius of the separation surface. When the BH spin is larger or the velocity at the separation surface is smaller, the density at the separation surface becomes concentrated more near the jet edge. Our semi-analytic model, combined with radiative transfer calculations, may help interpret the high-resolution VLBI observations and understand the origin of jetted matter.
147 - S. Walg , A. Achterberg 2020
The class of Double-Double Radio Galaxies (DDRGs) relates to episodic jet outbursts. How various regions and components add to the total intensity in radio images is less well known. In this paper we synthesize synchrotron images for DDRGs based on s pecial relativistic hydrodynamic simulations, making advanced approximations for the magnetic fields. We study the synchrotron images for: Three different radial jet profiles; Ordered, entangled or mixed magnetic fields; Spectral ageing from synchrotron cooling; The contribution from different jet components; The viewing angle and Doppler (de-)boosting; The various epochs of the evolution of the DDRG. To link our results to observational data, we adopt to J1835+6204 as a reference source. In all cases the synthesized synchrotron images show two clear pairs of hotspots, in the inner and outer lobes. The best resemblance is obtained for the piecewise isochoric jet model, for a viewing angle of approximately $vartheta sim -71^{circ}$, i.e. inclined with the lower jet towards the observer, with predominantly entangled ($gtrsim 70$ per cent of the magnetic pressure) in turbulent, rather than ordered fields. The effects of spectral ageing become significant when the ratio of observation frequencies and cut-off frequency $ u_{rm obs}/ u_{infty,0} gtrsim 10^{-3}$, corresponding to $sim 3 cdot 10^2$ MHz. For viewing angles $vartheta lesssim -30^{circ}$, a DDRG morphology can no longer be recognized. The second jets must be injected within $lesssim$ 4 per cent of the lifetime of the first jets for a DDRG structure to emerge, which is relevant for Active Galactic Nuclei feedback constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا