ترغب بنشر مسار تعليمي؟ اضغط هنا

Matter density distribution of general relativistic highly magnetized jets driven by black holes

93   0   0.0 ( 0 )
 نشر من قبل Taiki Ogihara
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-resolution very long baseline interferometry (VLBI) radio observations have resolved the detailed emission structures of active galactic nucleus jets. General relativistic magnetohydrodynamic (GRMHD) simulations have improved the understanding of jet production physics, although theoretical studies still have difficulties in constraining the origin and distribution of jetted matter. We construct a new steady, axisymmetric GRMHD jet model to obtain approximate solutions of black hole (BH) magnetospheres, and examine the matter density distribution of jets. By assuming fixed poloidal magnetic field shapes that mimic force-free analytic solutions and GRMHD simulation results and assuming constant poloidal velocity at the separation surface, which divides the inflow and outflow, we numerically solve the force-balance between the field lines at the separation surface and analytically solve the distributions of matter velocity and density along the field lines. We find that the densities at the separation surface in our parabolic field models roughly follow $propto r_{ss}^{-2}$ in the far zone from the BH, where $r_{ss}$ is the radius of the separation surface. When the BH spin is larger or the velocity at the separation surface is smaller, the density at the separation surface becomes concentrated more near the jet edge. Our semi-analytic model, combined with radiative transfer calculations, may help interpret the high-resolution VLBI observations and understand the origin of jetted matter.



قيم البحث

اقرأ أيضاً

It has for long been an article of faith among astrophysicists that black hole spin energy is responsible for powering the relativistic jets seen in accreting black holes. Two recent advances have strengthened the case. First, numerical general relat ivistic magnetohydrodynamic simulations of accreting spinning black holes show that relativistic jets form spontaneously. In at least some cases, there is unambiguous evidence that much of the jet energy comes from the black hole, not the disk. Second, spin parameters of a number of accreting stellar-mass black holes have been measured. For ballistic jets from these systems, it is found that the radio luminosity of the jet correlates with the spin of the black hole. This suggests a causal relationship between black hole spin and jet power, presumably due to a generalized Penrose process.
Gas falling into a black hole (BH) from large distances is unaware of BH spin direction, and misalignment between the accretion disc and BH spin is expected to be common. However, the physics of tilted discs (e.g., angular momentum transport and jet formation) is poorly understood. Using our new GPU-accelerated code H-AMR, we performed 3D general relativistic magnetohydrodynamic simulations of tilted thick accretion discs around rapidly spinning BHs, at the highest resolution to date. We explored the limit where disc thermal pressure dominates magnetic pressure, and showed for the first time that, for different magnetic field strengths on the BH, these flows launch magnetized relativistic jets propagating along the rotation axis of the tilted disc (rather than of the BH). If strong large-scale magnetic flux reaches the BH, it bends the inner few gravitational radii of the disc and jets into partial alignment with the BH spin. On longer time scales, the simulated disc-jet system as a whole undergoes Lense-Thirring precession and approaches alignment, demonstrating for the first time that jets can be used as probes of disc precession. When the disc turbulence is well-resolved, our isolated discs spread out, causing both the alignment and precession to slow down.
The current understanding of the formation of powerful bi-directional jets in systems such as radio galaxies and quasars is that the process involves a supermassive black hole that is being fed with magnetized gas through an orbiting accretion disc. In this paper we discuss the dynamics of the jet powered by rotating black holes, in the presence of a magnetic field, including the scaling of the jet length and their typical time scales. We consider a unified picture covering all phenomena involving jets and rotating black holes ranging from gamma ray bursts to extragalactic jets and discuss the relevant scaling laws. We have also discussed the acceleration of the particles in jets and consequent synchrotron and inverse Compton radiations. Accelerated protons from jets as possible sources of high energy cosmic rays are also discussed.
Relativistic jets, or highly collimated and fast-moving outflows, are endemic to many astrophysical phenomena. The jets produced by gamma-ray bursts and tidal disruption events are accompanied by the accretion of material onto a black hole or neutron star, with the accretion rate exceeding the Eddington limit of the compact object by orders of magnitude. In such systems, radiation dominates the energy-momentum budget of the outflow, and the dynamical evolution of the jet is governed by the equations of radiation hydrodynamics. Here we show that there are analytic solutions to the equations of radiation hydrodynamics in the viscous (i.e., diffusive) regime that describe structured, relativistic jets, which consist of a fast-moving, highly relativistic core surrounded by a slower-moving, less relativistic sheath. In these solutions, the slower-moving, outer sheath contains most of the mass, and the jet structure is mediated by local anisotropies in the radiation field. We show that, depending on the pressure and density profile of the ambient medium, the angular profile of the jet Lorentz factor is Gaussian or falls off even more steeply with angle. These solutions have implications for the nature of jet production and evolution in hyperaccreting systems, and demonstrate that such jets -- and the corresponding jet structure -- can be sustained entirely by radiative processes. We discuss the implications of these findings in the context of jetted tidal disruption events and short and long gamma-ray bursts.
131 - L. Brenneman 2009
Since the seminal work of Penrose (1969) and Blandford & Znajek (1977), it has been realized that black hole spin may be an important energy source in astrophysics. The radio-loud/radio-quiet dichotomy in the AGN population is usually attributed to d ifferences in black hole spin, with correlations between black hole spin and host galaxy morphology being hypothesized in order to explain why radio-loud AGN occur in early-type galaxies. X-ray observations are uniquely able to answer: Does black hole spin play a crucial role in powering relativistic jets such as those seen from radio-loud active galactic nuclei (AGN), Galactic microquasars, and Gamma-Ray Bursts? Indeed, the importance of black hole spin goes beyond its role as a possible power source: the spin of a supermassive black hole is a fossil record of its formation and subsequent growth history.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا