ﻻ يوجد ملخص باللغة العربية
High-resolution Very-Long-Baseline Interferometry observations of NGC 1052 show a two sided jet with several regions of enhanced emission and a clear emission gap between the two jets.This gap shrinks with increasing frequency and vanishes around $ usim43$ GHz. The observed structures are due to both the macroscopic fluid dynamics interacting with the surrounding ambient medium including an obscuring torus and the radiation microphysics. In this paper we investigate the possible physical conditions in relativistic jets of NGC 1052 by directly modelling the observed emission and spectra via state-of-the-art special-relativistic hydrodynamic (SRHD) simulations and radiative transfer calculations. To investigate the physical conditions in the relativistic jet we coupled our radiative transfer code to evolutionary algorithms and performed simultaneous modelling of the observed jet structure and the broadband radio spectrum. During the calculation of the radiation we consider both thermal and non-thermal emission. In order to compare our model to VLBI observations we take into account the sparse sampling of the u-v plane, the array properties and the imaging algorithm. We present for the first time an end-to-end pipeline for fitting numerical simulations to VLBI observations of relativistic jets taking into account the macrophysics including fluid dynamics and ambient medium configurations together with thermal/non-thermal emission and the properties of the observing array. The detailed analysis of our simulations shows that the structure and properties of the observed relativistic jets in NGC 1052 can be reconstructed by a slightly over-pressured jet ($d_ksim1.5$) embedded in a decreasing pressure ambient medium
Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic re
Strong downstream magnetic fields of order of $sim 1$G, with large correlation lengths, are believed to cause the large synchrotron emission at the afterglow phase of gamma ray bursts (GRBs). Despite of the recent theoretical efforts, models have fai
There are several methods to calculate the radiative and kinetic power of relativistic jets, but their results can differ by one or two orders of magnitude. Therefore, it is necessary to perform a calibration of the jet power, to understand the reaso
We have obtained Keck spectra for 16 globular clusters (GCs) associated with the merger remnant elliptical NGC 1052, as well as a long-slit spectrum of the galaxy. We derive ages, metallicities and abundance ratios from simple stellar population mode
We aim to determine the properties of the central region of NGC 1052 using X-ray and radio data. NGC 1052 (z=0.005) has been investigated for decades in different energy bands and shows radio lobes and a low luminosity active galactic nucleus (LLAGN)