ترغب بنشر مسار تعليمي؟ اضغط هنا

Erbium location into AlN films as probed by spatial resolution experimental techniques

118   0   0.0 ( 0 )
 نشر من قبل Valerie Brien
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper presents a thorough experimental investigation of erbium-doped aluminium nitride thin films prepared by R.F. magnetronsputtering, coupling Scanning Transmission Electron Microscopy X-ray-mapping imagery, conventional Transmission Electron Microscopy and X-ray diffraction. The study is an attempt of precise localisation of the rare earth atoms inside the films and in the hexagonal w{u}rtzite unit cell.The study shows that AlN:Erx is a solid solution even when x reaches 6 at.%, and does not lead to the precipitation of erbium rich phases. The X-ray diffraction measurements completed by simulation show that the main location of erbium in the AlN w{u}rtzite is the metal substitution site on the whole range. They also show that octahedral and tetrahedral sites of the w{u}rtzite do welcome Er ions over the [1.6--6%] range. The XRD deductions allow some interpretations on the theoretical mechanisms of the photoluminescence mechanisms and more specifically on their concentration quenching.



قيم البحث

اقرأ أيضاً

We grow AlN/4H-SiC and AlN/6H-SiC heterostructures by physical vapor deposition and characterize the heterointerface with nanoscale resolution. Furthermore, we investigate the spatial stress and strain distribution in these heterostructures using con focal Raman spectroscopy. We measure the spectral shifts of various vibrational Raman modes across the heterointerface and along the entire depth of the 4H- and 6H-SiC layers. Using the earlier experimental prediction for the phonon-deformation potential constants, we determine the stress tensor components in SiC as a function of the distance from the AlN/SiC heterointerface. In spite that the lattice parameter of SiC is smaller than that of AlN, the SiC layers are compressively strained at the heterointerface. This counterintuitive behavior is explained by different coefficients of thermal expansion of SiC and AlN when the heterostructures are cooled from growth to room temperature. The compressive stress values are maximum at the heterointerface, approaching one GPa, and relaxes to the equilibrium value on the scale of several tens of microns from the heterointerface.
92 - H. Rinnert 2019
Er-doped aluminum nitride films, containing different Er concentrations, were obtained at room temperature by reactive radio frequency magnetron sputtering. The prepared samples show a nano-columnar microstructure and the size of the columns is depen dent on the magnetron power. The Er-related photoluminescence (PL) was studied in relation with the temperature, the Er content and the microstructure. Steady-state PL, PL excitation spectroscopy and time-resolved PL were performed. Both visible and near infrared PL were obtained at room temperature for the as-deposited samples. It is demonstrated that the PL intensity reaches a maximum for an Er concentration equal to 1 at. % and that the PL efficiency is an increasing function of the magnetron power. Decay time measurements show the important role of defect related non radiative recombination, assumed to be correlated to the presence of grain boundaries. Moreover PL excitation results demonstrate that an indirect excitation of Er 3+ ions occurs for excitation wavelengths lower than 600 nm. It is also suggested that Er ions occupy at least two different sites in the AlN host matrix.
Inverse Heusler alloy Mn2CoAl thin films, known as a spin-gapless semiconductor (SGS), grown by three different methods: ultra-high vacuum magnetron spattering, Ar-ion beam assisted sputtering, and molecular beam epitaxy, are investigated by comparin g their electric transport properties, microstructures and atomic-level structures. Of the samples, the Mn2CoAl thin film grown by MBE consists of Mn- and Co-rich phases, the structures of which are determined to be the L21B-type and disordered L21-type, respectively, according to anomalous XRD analysis. None of them forms the XA-type structure expected for SGS Heusler alloy, although they all show SGS characteristics. We suggest, to validate SGS characteristics, it is necessary to extract not only magnetic and electric transport properties but also information about microstructures and atomic-scale structures of the films including defects such as atomic swap.
We report the detection of paramagnetic resonance in the double perovskite La2NiMnO6 at room temperature for microwave magnetic fields with frequencies, f = 1 GHz to 5 GHz, using two cavity-less methods. We use an indirect impedance method which make s use of a radio frequency impedance analyzer and a folded copper strip coil for the frequency range f = 1 to 2.2 GHz. In this method, when an applied dc magnetic field is swept, high-frequency resistance of the strip coil exhibits a sharp peak and the reactance curve crosses zero exhibiting resonance. A lock-in based broadband setup using a coplanar waveguide for microwave excitation was used for f = 2 to 5 GHz The resonance fields (Hr) obtained from both the techniques increase linearly with frequency and a large spectroscopic g-factor, equal to 2.1284, which supports the presence of Ni2+ cation with strong spin-orbit coupling. Line shape analysis and analytical fitting were performed to characterize the material in terms of its initial susceptibility and damping parameters.
We have used complementary neutron and x-ray reflectivity techniques to examine the depth profiles of a series of as-grown and annealed Ga[1-x]Mn[x]As thin films. A magnetization gradient is observed for two as-grown films and originates from a nonun iformity of Mn at interstitial sites, and not from local variations in Mn at Ga sites. Furthermore, we see that the depth-dependent magnetization can vary drastically among as-grown Ga[1-x]Mn[x]As films despite being deposited under seemingly similar conditions. These results imply that the depth profile of interstitial Mn is dependent not only on annealing, but is also extremely sensitive to initial growth conditions. We observe that annealing improves the magnetization by producing a surface layer that is rich in Mn and O, indicating that the interstitial Mn migrates to the surface. Finally, we expand upon our previous neutron reflectivity study of Ga[1-x]Mn[x]As, by showing how the depth profile of the chemical composition at the surface and through the film thickness is directly responsible for the complex magnetization profiles observed in both as-grown and annealed films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا