ﻻ يوجد ملخص باللغة العربية
We report the detection of paramagnetic resonance in the double perovskite La2NiMnO6 at room temperature for microwave magnetic fields with frequencies, f = 1 GHz to 5 GHz, using two cavity-less methods. We use an indirect impedance method which makes use of a radio frequency impedance analyzer and a folded copper strip coil for the frequency range f = 1 to 2.2 GHz. In this method, when an applied dc magnetic field is swept, high-frequency resistance of the strip coil exhibits a sharp peak and the reactance curve crosses zero exhibiting resonance. A lock-in based broadband setup using a coplanar waveguide for microwave excitation was used for f = 2 to 5 GHz The resonance fields (Hr) obtained from both the techniques increase linearly with frequency and a large spectroscopic g-factor, equal to 2.1284, which supports the presence of Ni2+ cation with strong spin-orbit coupling. Line shape analysis and analytical fitting were performed to characterize the material in terms of its initial susceptibility and damping parameters.
We show that in pulsed electrically detected magnetic resonance (pEDMR) signal modulation in combination with a lock-in detection scheme can reduce the low-frequency noise level by one order of magnitude and in addition removes the microwave-induced
We give evidence for intrinsic, defect-induced bulk paramagnetism in SiC by means of $^{13}$C and $^{29}$Si nuclear magnetic resonance (NMR) spectroscopy. The temperature dependence of the internal dipole-field distribution, probed by the spin part o
Measuring terahertz (THz) conductivity on an ultrafast time scale is an excellent way to observe charge-carrier dynamics in semiconductors as a function of time after photoexcitation. However, a conductivity measurement alone cannot separate the effe
Impedance spectroscopy measurements were performed in high quality Vanadium dioxide (VO2) thin films. This technique allows us investigate the resistive and capacitive contribution to the dielectric response near the metal-insulator transition (MIT).
This paper presents a thorough experimental investigation of erbium-doped aluminium nitride thin films prepared by R.F. magnetronsputtering, coupling Scanning Transmission Electron Microscopy X-ray-mapping imagery, conventional Transmission Electron